
Detecting and Surviving Intrusions

Exploring New Host-Based Intrusion Detection, Recovery, and Response Approaches

Ronny Chevalier 1,2

Ph.D. Thesis Defense

December 17th, 2019

1HP Labs (ronny.chevalier@hp.com)

2CIDRE Team, CentraleSupélec/Inria/CNRS/IRISA (ronny.chevalier@centralesupelec.fr)



Information Security: Overview and Concepts

Information security aims at protecting information assets and mitigating risks

Confidentiality Integrity Availability

1



Information Security: Overview and Concepts

Information security aims at protecting information assets and mitigating risks

Confidentiality

Integrity Availability

1



Information Security: Overview and Concepts

Information security aims at protecting information assets and mitigating risks

Confidentiality Integrity

Availability

1



Information Security: Overview and Concepts

Information security aims at protecting information assets and mitigating risks

Confidentiality Integrity Availability

1



Computing Platforms Rely on Preventive Security Mechanisms

Preventive security mechanisms aim at enforcing a security policy on our devices

Laptop Printer Server

2



Preventive Security is not Sufficient

Examples of preventive security mechanisms

• Access control

• Cryptography

• Firewalls

3



Preventive Security is not Sufficient

Examples of preventive security mechanisms

• Access control

• Cryptography

• Firewalls

Attackers will eventually bypass our security policy

• (Unknown) vulnerability

• System not updated

• Misconfiguration

3



Preventive Security is not Sufficient

Examples of preventive security mechanisms

• Access control

• Cryptography

• Firewalls

Attackers will eventually bypass our security policy

• (Unknown) vulnerability

• System not updated

• Misconfiguration

Computing platforms should not only prevent but detect and survive intrusions

3



Focus of This Work: Detecting and Surviving

Preventing Intrusions Detecting Intrusions Surviving Intrusions

4



Focus of This Work: Detecting and Surviving

Preventing Intrusions Detecting Intrusions Surviving Intrusions

How computing platforms detect and survive intrusions?

4



Computing Platforms Are Made of Multiple Layers

Computing platforms Abstraction layers

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

5



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

Detecting Intrusions at the Firmware Level

Conclusion and Perspectives

6



Commodity Operating Systems Can Detect Intrusions

Intrusion Detection Systems (IDSs)1

Knowledge-based vs anomaly-based

IDSs exist in commodity OSs

e.g., Antivirus software share many aspects of host-based IDSs2

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

1Anderson, Computer Security Threat Monitoring and Surveillance; Denning, “An Intrusion-Detection Model”.
2Morin and Mé, “Intrusion detection and virology: an analysis of differences, similarities and complementariness”.

7



Commodity Operating Systems Can Detect Intrusions

Intrusion Detection Systems (IDSs)1

Knowledge-based vs anomaly-based

IDSs exist in commodity OSs

e.g., Antivirus software share many aspects of host-based IDSs2

What can we do after a system has been compromised?

Eventually we want to patch the system

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

1Anderson, Computer Security Threat Monitoring and Surveillance; Denning, “An Intrusion-Detection Model”.
2Morin and Mé, “Intrusion detection and virology: an analysis of differences, similarities and complementariness”.

7



Commodity Operating Systems Can Detect Intrusions

Intrusion Detection Systems (IDSs)1

Knowledge-based vs anomaly-based

IDSs exist in commodity OSs

e.g., Antivirus software share many aspects of host-based IDSs2

What can we do after a system has been compromised?

Eventually we want to patch the system

What can we do while waiting for the patches?

• Stop the system?→ system unavailable for a long time

• Restore to a previous state?→ system still vulnerable

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

1Anderson, Computer Security Threat Monitoring and Surveillance; Denning, “An Intrusion-Detection Model”.
2Morin and Mé, “Intrusion detection and virology: an analysis of differences, similarities and complementariness”.

7



Commodity Operating Systems Can Detect Intrusions

Intrusion Detection Systems (IDSs)1

Knowledge-based vs anomaly-based

IDSs exist in commodity OSs

e.g., Antivirus software share many aspects of host-based IDSs2

What can we do after a system has been compromised?

Eventually we want to patch the system

What can we do while waiting for the patches?

• Stop the system?→ system unavailable for a long time

• Restore to a previous state?→ system still vulnerable

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

Commodity OSs can detect but cannot survive intrusions

1Anderson, Computer Security Threat Monitoring and Surveillance; Denning, “An Intrusion-Detection Model”.
2Morin and Mé, “Intrusion detection and virology: an analysis of differences, similarities and complementariness”.

7



Computing Platforms Are Made of Multiple Layers

Computing platforms Abstraction layers

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

8



Low-Level Components Are Increasingly Targeted

OS and Application Security Improved Nonetheless

It is more difficult to compromise systems stealthily

Attackers start to focus on lower abstraction layers

Stealthiness and persistence at the BIOS level3

Existing solutions

Many at boot time4, few at runtime5

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

Talks and papers about BIOS
and firmware attacks

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year of publication

0

2

4

6

8

10

12

14

16

18

N
um

be
r

of
pu

bl
ic

at
io

ns

3Researchers, LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit group.
4Regenscheid, Platform Firmware Resiliency Guidelines; Trusted Computing Group, TPM Main, Part 1 Design Principles; Cooper et al., BIOS protection guidelines; UEFI Forum, Unified Extensible Firmware

Interface Specification.
5HP Inc., HP Sure Start: Automatic Firmware Intrusion Detection and Repair .

9



Low-Level Components Are Increasingly Targeted

OS and Application Security Improved Nonetheless

It is more difficult to compromise systems stealthily

Attackers start to focus on lower abstraction layers

Stealthiness and persistence at the BIOS level3

Existing solutions

Many at boot time4, few at runtime5

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

Talks and papers about BIOS
and firmware attacks

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year of publication

0

2

4

6

8

10

12

14

16

18

N
um

be
r

of
pu

bl
ic

at
io

ns

3Researchers, LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit group.
4Regenscheid, Platform Firmware Resiliency Guidelines; Trusted Computing Group, TPM Main, Part 1 Design Principles; Cooper et al., BIOS protection guidelines; UEFI Forum, Unified Extensible Firmware

Interface Specification.
5HP Inc., HP Sure Start: Automatic Firmware Intrusion Detection and Repair .

9



Low-Level Components Are Increasingly Targeted

OS and Application Security Improved Nonetheless

It is more difficult to compromise systems stealthily

Attackers start to focus on lower abstraction layers

Stealthiness and persistence at the BIOS level3

Existing solutions

Many at boot time4, few at runtime5

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

Talks and papers about BIOS
and firmware attacks

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year of publication

0

2

4

6

8

10

12

14

16

18

N
um

be
r

of
pu

bl
ic

at
io

ns

3Researchers, LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit group.
4Regenscheid, Platform Firmware Resiliency Guidelines; Trusted Computing Group, TPM Main, Part 1 Design Principles; Cooper et al., BIOS protection guidelines; UEFI Forum, Unified Extensible Firmware

Interface Specification.
5HP Inc., HP Sure Start: Automatic Firmware Intrusion Detection and Repair .

9



Low-Level Components Are Increasingly Targeted

OS and Application Security Improved Nonetheless

It is more difficult to compromise systems stealthily

Attackers start to focus on lower abstraction layers

Stealthiness and persistence at the BIOS level3

Existing solutions

Many at boot time4, few at runtime5

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

Talks and papers about BIOS
and firmware attacks

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year of publication

0

2

4

6

8

10

12

14

16

18

N
um

be
r

of
pu

bl
ic

at
io

ns

Computing platforms are lacking generic IDS monitoring the runtime behavior of
the BIOS.

3Researchers, LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit group.
4Regenscheid, Platform Firmware Resiliency Guidelines; Trusted Computing Group, TPM Main, Part 1 Design Principles; Cooper et al., BIOS protection guidelines; UEFI Forum, Unified Extensible Firmware

Interface Specification.
5HP Inc., HP Sure Start: Automatic Firmware Intrusion Detection and Repair .

9



Thesis and Problems Addressed

Surviving Intrusions at the Operating System Level

How to design an OS so that its services can survive ongoing intrusions while

maintaining availability?

Contribution published at RESSI’186 and ACSAC’197

Detecting Intrusions at the Firmware Level

How to detect intrusions at the firmware level without impacting the quality of

service to the rest of the platform?

Contribution published at ACSAC’178

6Chevalier, Plaquin, and Hiet, “Intrusion Survivability for Commodity Operating Systems and Services: A Work in Progress”.

7Chevalier, Plaquin, Dalton, et al., “Survivor: A Fine-Grained Intrusion Response and Recovery Approach for Commodity Operating Systems”.

8Chevalier, Villatel, et al., “Co-processor-based Behavior Monitoring: Application to the Detection of Attacks Against the System Management Mode”.

10



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

State of the Art

Approach and Prototype

Evaluation

Conclusion

Detecting Intrusions at the Firmware Level

Conclusion and Perspectives

11



Running Example

Service: Gitea, a Git Self-Hosting Server

Open source clone of Github (git repositories, bug tracking,...)

Intrusion: Ransomware

It compromises data availability

12



State of the Art: Intrusion Survivability, Recovery, and Response

Intrusion Survivability9

Trade-off between the availability and the security risk

Intrusion Recovery10

Restore the system in a safe state when an intrusion is detected

Intrusion Response11

Limit the impact of an intrusion on the system

9Knight and Strunk, “Achieving Critical System Survivability Through Software Architectures”; Ellison et al., Survivable Network Systems: An emerging discipline.

13



State of the Art: Intrusion Survivability, Recovery, and Response

Intrusion Survivability9

Trade-off between the availability and the security risk

Intrusion Recovery10

Restore the system in a safe state when an intrusion is detected

Intrusion Response11

Limit the impact of an intrusion on the system

9Knight and Strunk, “Achieving Critical System Survivability Through Software Architectures”; Ellison et al., Survivable Network Systems: An emerging discipline.
10Goel et al., “The Taser Intrusion Recovery System”; Xiong, Jia, and P. Liu, “SHELF: Preserving Business Continuity and Availability in an Intrusion Recovery System”.

13



State of the Art: Intrusion Survivability, Recovery, and Response

Intrusion Survivability9

Trade-off between the availability and the security risk

Intrusion Recovery10

Restore the system in a safe state when an intrusion is detected

Intrusion Response11

Limit the impact of an intrusion on the system

9Knight and Strunk, “Achieving Critical System Survivability Through Software Architectures”; Ellison et al., Survivable Network Systems: An emerging discipline.
10Goel et al., “The Taser Intrusion Recovery System”; Xiong, Jia, and P. Liu, “SHELF: Preserving Business Continuity and Availability in an Intrusion Recovery System”.

11Balepin et al., “Using Specification-Based Intrusion Detection for Automated Response”; Shameli-Sendi, Cheriet, and Hamou-Lhadj, “Taxonomy of Intrusion Risk Assessment and Response System”.

13



State of the Art: Limitations we are addressing

Intrusion Survivability

Lack of focus on commodity OSs

Intrusion Recovery

• The system is still vulnerable and can be reinfected

• Lack of integration between intrusion recovery and response

Intrusion Response

Coarse-grained responses and few host-based solutions

14



State of the Art: Limitations we are addressing

Intrusion Survivability

Lack of focus on commodity OSs

Intrusion Recovery

• The system is still vulnerable and can be reinfected

• Lack of integration between intrusion recovery and response

Intrusion Response

Coarse-grained responses and few host-based solutions

14



State of the Art: Limitations we are addressing

Intrusion Survivability

Lack of focus on commodity OSs

Intrusion Recovery

• The system is still vulnerable and can be reinfected

• Lack of integration between intrusion recovery and response

Intrusion Response

Coarse-grained responses and few host-based solutions

14



State of the Art: Limitations we are addressing

Intrusion Survivability

Lack of focus on commodity OSs

Intrusion Recovery

• The system is still vulnerable and can be reinfected

• Lack of integration between intrusion recovery and response

Intrusion Response

Coarse-grained responses and few host-based solutions

Commodity OSs are lacking solutions to make them survive while waiting for the
patches to be available

14



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

State of the Art

Approach and Prototype

Evaluation

Conclusion

Detecting Intrusions at the Firmware Level

Conclusion and Perspectives

15



Approach Overview
Illustrative Example

Running Example

Gitea infected by some ransomware

When Detected

• Recovery: We restore the service and the encrypted files to a previous state

• Apply restrictions: We remove the ability to write on the file system

Positive Impact

If the ransomware reinfects the service→ cannot compromise the files

Degraded Mode

Users can no longer push to repositories→ trade-off between availability and security risk

16



Approach Overview
During the normal operation of the system

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Checkpoint & Log

States

Logs

Monitor

Checkpoint Log Checkpoint

Store

Store

17



Approach Overview
During the normal operation of the system

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Checkpoint & Log

States

Logs

Monitor

Checkpoint Log Checkpoint

Store

Store

17



Approach Overview
During the normal operation of the system

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Checkpoint & Log

1. Periodic checkpointing

States

Logs

Monitor

Checkpoint Log Checkpoint

Store

Store

17



Approach Overview
During the normal operation of the system

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Checkpoint & Log

1. Periodic checkpointing

2. Log file write accesses

States

Logs

Monitor

Checkpoint Log Checkpoint

Store

Store

17



Approach Overview
How our approach allows the system to survive intrusions after their detection?

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Recovery & Response

Policies

Logs /

States

Monitor

Alert

Restore

service

Apply

restrictions

Restore

files

Use

Use

18



Approach Overview
How our approach allows the system to survive intrusions after their detection?

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Recovery & Response

Policies

Logs /

States

Monitor

Alert

Restore

service

Apply

restrictions

Restore

files

Use

Use

18



Approach Overview
How our approach allows the system to survive intrusions after their detection?

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Recovery & Response

1. Restore infected objects

Policies

Logs /

States

Monitor

Alert

Restore

service

Apply

restrictions

Restore

files

Use

Use

18



Approach Overview
How our approach allows the system to survive intrusions after their detection?

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Recovery & Response

1. Restore infected objects

2. Withstand reinfection

Policies

Logs /

States

Monitor

Alert

Restore

service

Apply

restrictions

Restore

files

Use

Use

Remove privileges and decrease resource quotas

Per-service responses to prevent attackers to achieve their goals
18



Approach Overview
How our approach allows the system to survive intrusions after their detection?

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Recovery & Response

1. Restore infected objects

2. Withstand reinfection

3. Maintain core functions

Policies

Logs /

States

Monitor

Alert

Restore

service

Apply

restrictions

Restore

files

Use

Use

Potential Degraded Mode

The degraded mode maintains core functions while waiting for patches
18



Approach Overview
How our approach allows the system to survive intrusions after their detection?

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Recovery & Response

1. Restore infected objects

2. Withstand reinfection

3. Maintain core functions

Policies

Logs /

States

Monitor

Alert

Restore

service

Apply

restrictions

Restore

files

Use

Use

18



Approach Overview
How our approach allows the system to survive intrusions after their detection?

Operating System

Gitea
Apache
Service n

Devices

Network

Filesystem

Intrusion

Detection

Recovery & Response

1. Restore infected objects

2. Withstand reinfection

3. Maintain core functions

Policies

Logs /

States

Monitor

Alert

Restore

service

Apply

restrictions

Restore

files

Use

Use

We select responses thatminimize the availability impact on the service while
maximizing the security

18



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
text Example

Costs

very low, low, moderate, high, very high, critical

Malicious behaviors
Availability violation

Consume system resources

Crack passwords

Mine for cryptocurrency

Compromise data availability

Compromise access to information assets

Command and Control
Determine C2 server
Generate C2 domain name(s)
Receive data from C2 server
Control malware via remote command
Update configuration
...

Example of malicious behaviors

19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
text Example

Costs

very low, low, moderate, high, very high, critical

Malicious behaviors
Availability violation
Consume system resources
Crack passwords

Mine for cryptocurrency

Compromise data availability
Compromise access to information assets

...
Command and Control
Determine C2 server
Generate C2 domain name(s)

Receive data from C2 server
Control malware via remote command
Update configuration

...
...

Example of a non-exhaustive malicious behavior

hierarchy (Source: MAEC of the STIX project)

19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
text Example

Costs

very low, low,moderate, high, very high, critical

Malicious behaviors
Availability violation=moderate
Consume system resources
Crack passwords

Mine for cryptocurrency

Compromise data availability
Compromise access to information assets

...
Command and Control
Determine C2 server
Generate C2 domain name(s)

Receive data from C2 server
Control malware via remote command
Update configuration

...
...

Example of a non-exhaustive malicious behavior

hierarchy (Source: MAEC of the STIX project)

19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
text Example

Costs

very low, low,moderate, high, very high, critical

Malicious behaviors
Availability violation=moderate
Consume system resources=moderate
Crack passwords=moderate
Mine for cryptocurrency=moderate

Compromise data availability=moderate
Compromise access to information assets=moderate

...
Command and Control
Determine C2 server
Generate C2 domain name(s)

Receive data from C2 server
Control malware via remote command
Update configuration

...
...

Example of a non-exhaustive malicious behavior

hierarchy (Source: MAEC of the STIX project)

19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
text Example

19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
text Example

Per-service responses
File system
Read-only file system
Read-only path

Inaccessible path

System calls
Blacklist any system call
Blacklist a list or a category of system calls

Network
Disable network
Blacklist IP addresses
Blacklist ports
...

Resources
CPU quota
...

...

Example of a non-exhaustive per-service response

hierarchy

Responses may be provided via the exchange format STIX (e.g., the course of action field)
19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
Defined by threat intelligence

text Example

19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
Defined by threat intelligence
Defined by the organization

text Example

Risk Matrix

Malicious Behavior Cost

Confidence

(Likelihood)

Very low

0 – 0.2

Low

0.2 – 0.4

Moderate

0.4 – 0.6

High

0.6 – 0.8

Very high

0.8 – 1

Very likely

0.8 – 1
L M H H H

Likely

0.6 – 0.8
L M M H H

Probable

0.4 – 0.6
L L M M H

Unlikely

0.2 – 0.4
L L L M M

Very unlikely

0 – 0.2
L L L L L

19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
Defined by threat intelligence
Defined by the organization

text Example

Cost vs Efficiency

It prioritizes efficiency if the risk is high, and cost

if the risk is low

max (Risk× Efficiency+ (1− Risk)× (1− Cost))
19



Cost-Sensitive Response Selection

understand the intrusion → find possible responses → assign costs → select a response

Response

Costs

Response

Efficiency

Malicious

Behaviors

Costs

Optimization

1. Pareto-optimal set

2. Weighted sum

Risk

Matrix

Intrusion

Detection

Threat

Intelligence

Selected Response

Cost

very likely

LikelihoodInitial

Alert

Additional

Information Cost Efficiency

Risk

ransomware

Malicious

Behaviors

read-only FS, disable syscall,...

Responses

Defined by the administrator/developper
Defined by threat intelligence
Defined by the organization

text Example

Cost vs Efficiency

It prioritizes efficiency if the risk is high, and cost

if the risk is low

max (Risk× Efficiency+ (1− Risk)× (1− Cost))

We rely on:

• Possible responses

• Malicious behaviors

• Likelihood

We assign:

• Response costs

• Malicious behavior costs

• Risk matrix

We select responses based on:

• Response cost

• Risk

• Response efficiency

19



Prototype Implementation for Linux-Based Systems

Projects Used or Modified

Project What does it do? What is it? Why do we use/modify it?
Lines of C

code added

systemd system and service manager Orchestration 2639

CRIU checkpoint & restore processes Restoration 383

snapper manage snapshots of file systems Restoration 0

Linux kernel Logging & Responses 460

cgroups set of processes bound to a set of limits

seccomp filter system calls

namespaces partition kernel resources

audit record security relevant events

[...]

20



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

State of the Art

Approach and Prototype

Evaluation

Conclusion

Detecting Intrusions at the Firmware Level

Conclusion and Perspectives

21



Evaluation Setup

What Do We Evaluate?

• Responses effectiveness

• Cost-sensitive response selection

• Availability cost and performance impact

• Stability of degraded services

Malware and Attacks

• Different types of malicious behaviors (botnet, ransomware, cryptominer,...)

• Linux.BitCoinMiner, Linux.Rex.1, Hakai, Linux.Encoder.1, GoAhead Exploit

Performance Evaluation Setup

• Various types of services (Apache, nginx, mariadb, beanstalkd, mosquitto, gitea)

• Both synthetic and real-world benchmarks using Phoronix test suite

22



Evaluation Setup

What Do We Evaluate?

• Responses effectiveness

• Cost-sensitive response selection

• Availability cost and performance impact

• Stability of degraded services

Malware and Attacks

• Different types of malicious behaviors (botnet, ransomware, cryptominer,...)

• Linux.BitCoinMiner, Linux.Rex.1, Hakai, Linux.Encoder.1, GoAhead Exploit

Performance Evaluation Setup

• Various types of services (Apache, nginx, mariadb, beanstalkd, mosquitto, gitea)

• Both synthetic and real-world benchmarks using Phoronix test suite

22



Security Evaluation
Restoration and Responses Effectiveness

Attack Scenario Malicious Behavior
Per-service

Response Policy

Linux.BitCoinMiner Mine for cryptocurrency Ban mining pool IPs

Linux.BitCoinMiner Mine for cryptocurrency Reduce CPU quota

Linux.Rex.1 Join P2P botnet Ban bootstrapping IPs

Hakai Communicate with C&C Ban C&C servers’ IPs

Linux.Encoder.1 Encrypt data Read-only filesystem

GoAhead exploit Open reverse shell Forbid connect syscall

GoAhead exploit Data theft Render paths inaccessible

Results

• The service is restored

• The service can withstand the reinfection

23



Security Evaluation
Cost-Sensitive Response Selection

Goal

Evaluate the impact of the IDS accuracy when selecting responses

→ accurate likelihood (1), inaccurate likelihood (2), false positive (3)

Scenario

Survive ransomware that compromised Gitea

Results

• High risk: read-only filesystem (1, 3)

• Ransomware failed to reinfect

• Gitea still usable (can access all repositories, clone them, log in)

• Low risk: read-only paths of important git repositories (2)

• Ransomware could not encrypt important repositories

• Gitea still usable (can access important repositories, clone them)

24



Performance Evaluation

Availability Cost

• less than 300ms to checkpoint

• less than 325ms to restore

25



Performance Evaluation

Availability Cost

• less than 300ms to checkpoint

• less than 325ms to restore

Monitoring Cost

• Overhead present only on applications that

write to the file system

• Small overhead in general (0.6% - 4.5%)

• Worst case (28.7% overhead): writing

small files asynchronously in burst

• e.g., SHELF12 has 8% and 67% overhead

No monitoring (baseline)
Monitoring rule enabled, but service not monitored
Monitoring rule enabled and service monitored

600

625

650

675

700

Compile Initial Create Read Compiled
Tree

Parameters

0

80

160

240

M
B/

s

(a)MB/s score with the Compilebench benchmark (more is
better)

25



Performance Evaluation

Availability Cost

• less than 300ms to checkpoint

• less than 325ms to restore

Monitoring Cost

• Overhead present only on applications that

write to the file system

• Small overhead in general (0.6% - 4.5%)

• Worst case (28.7% overhead): writing

small files asynchronously in burst

• e.g., SHELF12 has 8% and 67% overhead

No monitoring (baseline)
Monitoring rule enabled, but service not monitored
Monitoring rule enabled and service monitored

510

525

540

555

Linux 4.13
Parameters

0

25

50

75

100

T
im

e
(in

se
co

nd
s)

(b) Time (in seconds) to build the Linux kernel (less is better)

25



Performance Evaluation

Availability Cost

• less than 300ms to checkpoint

• less than 325ms to restore

Monitoring Cost

• Overhead present only on applications that

write to the file system

• Small overhead in general (0.6% - 4.5%)

• Worst case (28.7% overhead): writing

small files asynchronously in burst

• e.g., SHELF12 has 8% and 67% overhead

No monitoring (baseline)
Monitoring rule enabled, but service not monitored
Monitoring rule enabled and service monitored

12.0

13.5

15.0

Linux kernel 4.15 with tar 1.30
Parameters

0.0

1.5

3.0

4.5

T
im

e
(in

se
co

nd
s)

(c) Time (in seconds) to extract the archive (.tar.gz) of the
Linux kernel source code (less is better)

25



Performance Evaluation

Availability Cost

• less than 300ms to checkpoint

• less than 325ms to restore

Monitoring Cost

• Overhead present only on applications that

write to the file system

• Small overhead in general (0.6% - 4.5%)

• Worst case (28.7% overhead): writing

small files asynchronously in burst

• e.g., SHELF12 has 8% and 67% overhead

12Xiong, Jia, and P. Liu, “SHELF: Preserving Business Continuity and Availability in an Intrusion Recovery System”.

25



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

State of the Art

Approach and Prototype

Evaluation

Conclusion

Detecting Intrusions at the Firmware Level

Conclusion and Perspectives

26



Scientific Contributions and Future Work

What were the challenges?

• The system survives while waiting for the patches

• Realistic use cases

• Maintain availability while maximizing security

Future work

• Checkpointing limitations (e.g., with

CRIU)

• Models input

RESSI’18

Ronny Chevalier, David Plaquin, and Guillaume Hiet. “Intrusion Survivability for Commodity Operating Systems

and Services: A Work in Progress”. May 2018

ACSAC’19

Ronny Chevalier, David Plaquin, Chris Dalton, and Guillaume Hiet. “Survivor: A Fine-Grained Intrusion

Response and Recovery Approach for Commodity Operating Systems”. Dec. 2019

27



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

Detecting Intrusions at the Firmware Level

Background, Use Case, and State of the Art

Approach and Prototype

Evaluation

Conclusion

Conclusion and Perspectives

28



Computers rely on firmware

Where can we find firmware?

Mother boards (e.g., BIOS), hard disks, network cards,...

Here, we focus on BIOS/UEFI-compliant firmware

What is it?

• Stored in a flash

• Low-level software

• Tightly linked to hardware

Boot time vs Runtime

• Early execution and configuration

• Highly privileged runtime software

Hardware

BIOS

Operating

System

Applications

Pr
iv
ile
ge
s

More

Less

29



What is the problem?

BIOSs are often written in unsafe languages (i.e., C & assembly)

Memory safety errors (e.g., use after free or buffer overflow)

BIOSs are not exempt from vulnerabilities13

Why compromise a BIOS?

• Malware can be hard to detect (stealth)

• Malware can be persistent (survives even if the HDD/SSD is changed) and costly to remove

What do we want?

• Boot time integrity

• Runtime integrity→ some platforms are rarely rebooted

13Kallenberg et al., “Defeating Signed BIOS Enforcement”; Bazhaniuk et al., “A new class of vulnerabilities in SMI handlers”; Researchers, LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit
group.

30



What are the currently used solutions?

Boot time

• Signed updates

• Signature verification before executing

• Measurements and reporting to a TPM chip

• Immutable hardware root of trust

Immutable

Root of Trust

UEFI

Firmware

Bootloader

Operating

System

Signed

Updates

Verify
Measure &

Report

Runtime

Isolation of critical services available while the OS is running

→ our focus is with the System Management Mode (SMM)

31



What are the currently used solutions?

Boot time

• Signed updates

• Signature verification before executing

• Measurements and reporting to a TPM chip

• Immutable hardware root of trust

Immutable

Root of Trust

UEFI

Firmware

Bootloader

Operating

System

Signed

Updates

Verify
Measure &

Report

Runtime

Isolation of critical services available while the OS is running

→ our focus is with the System Management Mode (SMM)

31



Introducing the System Management Mode (SMM)
Highly privileged execution mode for x86 processors

Runtime services

BIOS update, power management, UEFI variables handling, etc.

How to enter the SMM?

• Trigger a System Management Interrupt (SMI)→ needs kernel privileges

• SMIs code & data are stored in a protected memory region: System Management RAM (SMRAM)

BIOS code is not exempt from vulnerabilities affecting SMM14

Why is it interesting for an attacker?

• Only mode that can write to the flash containing the BIOS

• Arbitrary code execution in SMM gives full control of the platform

14Bazhaniuk et al., “A new class of vulnerabilities in SMI handlers”; Bulygin, Bazhaniuk, et al., “BARing the System: New vulnerabilities in Coreboot & UEFI based systems”; Pujos, SMM unchecked pointer
vulnerability; Researchers, LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit group.

32



State of the Art: Runtime Intrusion Detection for Low-Level Components

Few solutions were designed to monitor the SMM at runtime

Snapshot-Based Approaches15

• Periodic snapshot of the target’s state

• Limitations: transient attacks

Event-Based Approaches16

• Observe events generated by the target

• Limitations: performance issues, lack of flexibility, or semantic gap

15Petroni et al., “Copilot - a Coprocessor-based Kernel Runtime Integrity Monitor”; Bulygin and Samyde, “Chipset based approach to detect virtualization malware”.

16Lee et al., “KI-Mon: A Hardware-assisted Event-triggered Monitoring Platform for Mutable Kernel Object”; Z. Liu et al., “CPU Transparent Protection of OS Kernel and Hypervisor Integrity with

Programmable DRAM”.

33



State of the Art: Runtime Intrusion Detection for Low-Level Components

Few solutions were designed to monitor the SMM at runtime

Snapshot-Based Approaches15

• Periodic snapshot of the target’s state

• Limitations: transient attacks

Event-Based Approaches16

• Observe events generated by the target

• Limitations: performance issues, lack of flexibility, or semantic gap

How computing platforms can be designed to detect intrusions modifying the
runtime behavior of the SMM?

15Petroni et al., “Copilot - a Coprocessor-based Kernel Runtime Integrity Monitor”; Bulygin and Samyde, “Chipset based approach to detect virtualization malware”.

16Lee et al., “KI-Mon: A Hardware-assisted Event-triggered Monitoring Platform for Mutable Kernel Object”; Z. Liu et al., “CPU Transparent Protection of OS Kernel and Hypervisor Integrity with

Programmable DRAM”.

33



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

Detecting Intrusions at the Firmware Level

Background, Use Case, and State of the Art

Approach and Prototype

Evaluation

Conclusion

Conclusion and Perspectives

34



Our objective

Our goal is to detect attacks that modify the expected behavior of the SMM bymonitoring its
behavior at runtime.

Monitor
Runtime

Firmware

Raise alert or

Stop execution or

...

Response

Behavior

Monitoring

Such a goal raises the following questions:

• How to ensure the integrity of the monitor?

• How to define a correct behavior?

• How to monitor?

35



Approach overview

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional

FIFO

Co-processor Processor

Expected

target behavior
SMM code

How to ensure the

integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based

Compiler

SMM source

code

BIOS source code

How to define a correct behavior?

36



Approach overview

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional

FIFO

Co-processor Processor

Expected

target behavior
SMM code

How to ensure the

integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based

Compiler

SMM source

code

BIOS source code

How to define a correct behavior?

36



Approach overview

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional

FIFO

Co-processor Processor

Expected

target behavior
SMM code

How to ensure the

integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based

Compiler

SMM source

code

BIOS source code

How to define a correct behavior?

36



Approach overview

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional

FIFO

Co-processor Processor

Expected

target behavior
Instrumented

SMM code

How to ensure the

integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based

Compiler

SMM source

code

BIOS source code

How to define a correct behavior?

36



Approach overview

Co-processor RAM Processor RAM

TargetMonitor

Unidirectional

FIFO

Co-processor Processor

Expected

target behavior
Instrumented

SMM code

How to ensure the

integrity of the monitor?

Semantic gap?
How to monitor?

bridging the semantic gap

LLVM-based

Compiler

SMM source

code

BIOS source code

How to define a correct behavior?

36



How to define a correct behavior?

Our use case: SMM code

• Written in unsafe languages (i.e., C & assembly)

→ Such languages are often targeted by attacks hijacking the control flow

• Tightly coupled to hardware

→ Its behavior rely on hardware configuration registers

Control Flow Graph (CFG)

Define the control flow that the software is expected to follow

→ Control Flow Integrity (CFI)

Invariants on CPU registers

Define rules that registers are expected to satisfy

→ CPU registers integrity

37



How to define a correct behavior?

Control Flow Integrity (CFI): principle

Example

void auth(int a, int b) {
char buffer[512];

[...vuln...]

verification(buffer);
}
void verification(char *input) {

if (strcmp(input, "secret") == 0)
authenticated();

else
non_authenticated();

}

Simplified graph

authverification
Non

authenticated

Authenticated

38



How to define a correct behavior?

Control Flow Integrity (CFI): principle

Example

void auth(int a, int b) {
char buffer[512];

[...vuln...]

verification(buffer);
}
void verification(char *input) {

if (strcmp(input, "secret") == 0)
authenticated();

else
non_authenticated();

}

Simplified graph

authverification
Non

authenticated

Authenticated

38



How to define a correct behavior?

Control Flow Integrity (CFI): principle

Example

void auth(int a, int b) {
char buffer[512];

[...vuln...]

verification(buffer);
}
void verification(char *input) {

if (strcmp(input, "secret") == 0)
authenticated();

else
non_authenticated();

}

Simplified graph

authverification
Non

authenticated

Authenticated

Goal: constrain the execution path to follow a control-flow graph (CFG)

38



How to define a correct behavior?

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification

Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo)(int);

} SomeStruct;
int bar(SomeStruct *s) {
char c;
[...]

c = s->foo(31);
[...]

}

Target
RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Call Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source

code

valid?

39



How to define a correct behavior?

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification

Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo)(int);

} SomeStruct;
int bar(SomeStruct *s) {
char c;
[...]

c = s->foo(31);
[...]

}

Target
RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Call Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source

code

valid?

39



How to define a correct behavior?

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification

Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo)(int);

} SomeStruct;
int bar(SomeStruct *s) {
char c;
[...]

c = s->foo(31);
[...]

}

Target
RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Call Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source

code

valid?

39



How to define a correct behavior?

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification

Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo)(int);

} SomeStruct;
int bar(SomeStruct *s) {
char c;
[...]

c = s->foo(31);
[...]

}

Target
RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Call Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source

code

valid?

39



How to define a correct behavior?

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification

Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo)(int);

} SomeStruct;
int bar(SomeStruct *s) {
char c;
[...]

c = s->foo(31); /* Call Site ID = 1561 */
[...]

}

Target
RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Call Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source

code

valid?

39



How to define a correct behavior?

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification

Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo)(int);

} SomeStruct;
int bar(SomeStruct *s) {
char c;
[...]

[SendMessage(1561, s->foo)]
c = s->foo(31); /* Call Site ID = 1561 */
[...]

}

Target
RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Call Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source

code

valid?

39



How to define a correct behavior?

Control Flow Integrity (CFI): type-based verification

We focus on indirect branches integrity

Type-based verification

Ensures the integrity of indirect calls

typedef struct SomeStruct {
[...]
char (*foo)(int);

} SomeStruct;
int bar(SomeStruct *s) {
char c;
[...]

[SendMessage(1561, s->foo)]
c = s->foo(31); /* Call Site ID = 1561 */
[...]

}

Target
RuntimeCompile time

Monitor
RuntimeCompile time

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Instrumented

SMM code

Message

Call Site ID 1561

Target Address 0x0fffb804

Message
Call Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Address Type

0x0fffb804 i8(i32)

0x0befca04 i32()
... ...

Compilation

SMM source

code

valid?

39



How to define a correct behavior?

Control Flow Integrity (CFI): shadow call stack

Shadow call stack

Ensures integrity of the return address on the stack

Target
RuntimeCompile time

Monitor
Runtime

Message

Return Address 0x0f8a520c
MessageInstrumented

SMM code

Message

Return Address 0x0f8a520c
Message...

0x0f8522d0
0x0f8a520c

Shadow call stack

valid?

Compilation

SMM source

code

pop

40



How to define a correct behavior?
CPU registers integrity

SMM code is tightly coupled to hardware

• Generic detection methods (e.g., CFI) are not aware of hardware specificities

• Adhoc detection methods are needed

Some interesting registers for an attacker

• SMBASE: Defines the SMM entry point

• CR3: Physical address of the page directory

→ Their value is stored in memory and is not supposed to change at runtime

How to protect such registers?

• Send the expected values at boot time

• Send messages at runtime containing these values to detect any discrepancy

41



How to monitor?
Communication channel constraints

Security constraints

• Message integrity

• Chronological order

• Exclusive access

Performance constraints

• Acceptable latency of an SMI as defined by Intel BIOS Test Suite: 150 µs

• More than 150 µs per SMI handler leads to degradation of performance or user experience

42



How to monitor?
Communication channel design

Additional hardware component

• Chronological order

→ FIFO (queue)

• Message integrity

→ Restricted FIFO

• Exclusive access

→ Check if CPU is in SMM (SMIACT# signal)

• Performance

→ Use a low latency interconnect
target

Restricted

FIFO

monitor

Co-processor

Processor

push
In SMM?

(SMIACT#)

pop

43



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

Detecting Intrusions at the Firmware Level

Background, Use Case, and State of the Art

Approach and Prototype

Evaluation

Conclusion

Conclusion and Perspectives

44



Our experimental setup

Our prototype is implemented in a simulated and emulated environment

SMM code implementations used

• EDK2: foundation of many BIOSes (Apple, HP, Intel,...)

→ UEFI Variables SMI handlers

• coreboot: perform hardware initialization (used on some Chromebooks)

→ Hardware-specific SMI handlers

We want to emulate SMM environment and features

QEMU emulator for security evaluation

We want to simulate accurately the performance impact

gem5 simulator for performance evaluation

45



Security evaluation

We simulated attacks that exploited vulnerabilities similar to those found in real-world BIOSes

Vulnerability Attack Target Security Advisories Detected

Buffer overflow Return address CVE-2013-3582 Yes

Arbitrary write Function pointer CVE-2016-8103 Yes

Arbitrary write SMBASE LEN-4710 Yes

Insecure call Function pointer LEN-8324 Yes

46



Performance evaluation
Running time overhead for SMI handlers

• Under the 150 microseconds limit defined by Intel

• Most of the communication overhead is due to the shadow call stack

EDK2

SetVariable GetVariable Query
VariableInfo

GetNext
VariableName

0

10

20

30

40

50

T
im

e
(m

ic
ro

se
co

nd
s) Original

Communication overhead
Instrumentation overhead

coreboot

i82801gx
APMC

i82801gx
TCO

i82801gx
PM1

AMD Agesa
APMC

AMD Agesa
GPE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

47



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

Detecting Intrusions at the Firmware Level

Background, Use Case, and State of the Art

Approach and Prototype

Evaluation

Conclusion

Conclusion and Perspectives

48



Scientific Contributions and Future Work

What were the challenges?

• Detect privileged attacks against runtime firmware

• Do not impact quality of service (< 150 µs Intel threshold)

• Simulation-based prototype implementation

Future work

• Hardware-based prototype

• Intel CET

ACSAC’17

Ronny Chevalier, Maugan Villatel, David Plaquin, and Guillaume Hiet. “Co-processor-based Behavior

Monitoring: Application to the Detection of Attacks Against the System Management Mode”. Dec. 2017

49



Agenda

Introduction: Preventing, Detecting, and Surviving Intrusions

Surviving Intrusions at the Operating System Level

Detecting Intrusions at the Firmware Level

Conclusion and Perspectives

50



Conclusion

Computing platforms should not only prevent but detect and survive intrusions

Surviving Intrusions at the Operating System Level

• The system survives while waiting for the patches

• Maintains availability while maximizing security

• Linux-based prototype implementation

ACSAC’19, RESSI’18

Detecting Intrusions at the Firmware Level

• The platform detects attacks targeting runtime firmware

• Maintains quality of service while detecting privileged attacks

• Simulation-based prototype with the SMM as a use case

ACSAC’17

51



Perspectives

How to adapt the system so that we can deactivate our responses?

• Can we automatically find the vulnerabilities exploited by the attackers?

• How can we automatically patch them?

How to survive intrusions at the firmware level?

• How to recover the SMRAM and the SMI handlers’ state?

• How to apply restrictions per-SMI handler?

52



Thanks for your attention!

52



Questions?

Computing platforms should not only prevent but detect and survive intrusions

Surviving Intrusions at the Operating System Level

• The system survives while waiting for the patches

• Maintains availability while maximizing security

• Linux-based prototype implementation

ACSAC’19, RESSI’18

Detecting Intrusions at the Firmware Level

• The platform detects attacks targeting runtime firmware

• Maintains quality of service while detecting privileged attacks

• Simulation-based prototype with the SMM as a use case

ACSAC’17

53



Backup: Surviving

53



Prototype Implementation for Linux-Based Systems
Architecture Overview

Service n
Service 2
Service 1

systemd

snapper CRIU

StatesLogger

Logs

Responses

Selection
IDSPolicies

Isolated Components Monitored
Services

User land

Per-service

Privileges

& Quotas dynamic policy

MAC static policy

Resources, Files, Devices, Network,…

Linux Kernel

Trigger

checkpoint

Checkpoint

Use

Send

Alert

Responses

Monitor

Sto
re

Log

Store & Fetch

Manage

Use

Checkpoint

Isolate

Configure

1 2 n

54



Attack Graphs, Attack Trees, Attack-Defense Trees,...

Models That Depends on Vulnerabilities

Various approaches rely on knowledge about vulnerabilities17

Issues

• It requires to continuously check for the presence of vulnerabilities

• There are unknown vulnerabilities that can be exploited

“Exploits and their underlying vulnerabilities have a rather long average life expectancy (6.9

years)”18

“For a given stockpile of zero-day vulnerabilities, after a year, approximately 5.7 percent have been

discovered by an outside entity”.

17Foo et al., “ADEPTS: Adaptive Intrusion Response Using Attack Graphs in an E-Commerce Environment”; Kheir et al., “A Service Dependency Model for Cost-sensitive Intrusion Response”;

Shameli-Sendi, Louafi, et al., “Dynamic Optimal Countermeasure Selection for Intrusion Response System”.

18Ablon and Bogart, Zero Days, Thousands of Nights: The life and Times of Zero-Day Vulnerabilities and Their Exploits.

55



Stability of the Degraded Services

Core Functions

Our policies help to define the privileges that should never be removed

None of The Services We Tested Crashed

Apache, nginx, mariadb, beanstalkd, mosquitto, gitea

• They performed error checking

• They logged errors but did not crash

Generalization

• Such a degradation should work with other services that perform error checking

• Static analysis tools highlight missing error checks19

19CERT C Coding Standard, ERR00-C. Adopt and implement a consistent and comprehensive error-handling policy; CERT C Coding Standard, EXP12-C. Do not ignore values returned by functions.

56



Storage Cost Overhead

Checkpointing Services Requires Storage Space

Service Checkpoint Size

Apache 26.2MiB

nginx 7.5MiB

mariadb 136.0MiB

beanstalkd 130.1 KiB

Memory pages took at least 95.3% of the size of their checkpoint

57



Availability Cost Details
Checkpoint

Checkpoint Operation Mean
Standard

deviation

Standard error

of the mean

Service-independent operations

Initialize (µs) 643.20 90.75 14.35

Checkpoint service metadata (µs) 51.47 8.45 1.33

Snapshot file system (ms) 98.95 1.38 2.19

Checkpoint processes (CRIU)

httpd (ms) 199.24 11.05 3.49

nginx (ms) 51.59 3.99 1.26

mariadb (ms) 171.77 8.52 2.69

beanstalkd (ms) 16.25 1.37 0.43

Total

httpd (ms) 298.88

nginx (ms) 151.24

mariadb (ms) 271.41

beanstalkd (ms) 115.89

Time to perform the checkpoint operations of a service

58



Availability Cost Details
Restore

Restore Operation Mean
Standard

deviation

Standard error

of the mean

Kill processes

httpd (ms) 16.39 2.52 1.13

nginx (ms) 19.24 3.69 1.65

mariadb (ms) 28.48 2.16 0.97

beanstalkd (ms) 10.85 1.19 0.53

Service-independent operations

Initialize (µs) 209.40 32.07 7.17

Compare Snapshots (ms) 148.23 32.01 7.16

Restore service metadata (µs) 212.75 36.23 8.10

Restore processes (CRIU)

httpd (ms) 132.42 6.09 2.72

nginx (ms) 59.88 4.88 2.18

mariadb (ms) 147.07 2.59 1.16

beanstalkd (ms) 36.63 2.87 1.28

Total

httpd (ms) 299.29

nginx (ms) 227.79

mariadb (ms) 324.22

beanstalkd (ms) 196.16

Time to perform the restore operations of a service

59



Backup: Detecting

59



Security evaluation
Number and size of equivalence classes for the type-based verification

Our analysis with EDK II gave:

• 158 equivalence classes of size 1,

• 24 of size 2,

• 42 of size 3,

• 2 of size 5,

• 1 of size 9,

• and 1 of size 13.

60



Performance evaluation
Co-processor time to process messages

Set
Variable

GetVariableQuery
VariableInfo

GNVN Intel
i82801gx

AMD
Agesa

0

50

100

150

200

T
im

e
(m

ic
ro

se
co

nd
s)

230

152
131 137

18 7

61



Performance evaluation
Number of packets sent due to the instrumentation

Number of packets sent

SMI Handler

Shadow

stack

(SS)

Indirect

call

(IC)

SMBASE

& CR3

(SC)

Total

number of

packets

EDK II
VariableSmm

SetVariable 384 4 4 392

GetVariable 240 4 4 248

QueryVariableInfo 299 4 4 208

GetNextVariableName 212 4 4 220

coreboot
Intel i82801gx

APMC/TCO/PM1 8 2 4 14

AMD Agesa Hudson

APMC/GPE 4 0 4 8

Figure 1: Number of packets sent during one SMI handler (Number of packets per message type: SS=2, IC=2, SC=4)

62



Threat model & assumptions

The target sends messages to describe its own behavior

Key point

The attacker must alter the control flow (i.e., behavior) in order to forge messages

→ The attacker cannot send messages in lieu of the targetwithout first being detected

What are the attacker’s capabilities before the attack?

Complete control over the OS (e.g., can trigger as many SMI as necessary)

What kind of attack?

Runtime attack by triggering memory corruption issues in an SMI handler (e.g., ROP)

63



Related work
Snapshot-based approach

Copilot [Petroni et al., “Copilot - a Coprocessor-
based Kernel Runtime Integrity Monitor”]

Main CPU Co-pilot
PCI CardProcessor

System Bus

Main

Memory

DMA

3 Flexible 7 Cannot monitor SMM code

7 Semantic gap 7 Transient attacks

7 Additional hardware

DeepWatch [Bulygin and Samyde, “Chipset
based approach to detect virtualization
malware”]

Main CPU
Processor Chipset

DeepWatch

Main

Memory

DMA

3 Flexible3 Can monitor SMM code

7 Semantic gap 7 Transient attacks

3 No additional hardware

64



Related work
Event-driven approach

Ki-Mon [Lee et al., “KI-Mon: A Hardware-
assisted Event-triggered Monitoring Platform
for Mutable Kernel Object”]

Main CPU Ki-Mon
Co-processorProcessor

System Bus

Main

Memory

DMA Monitoring

3 Flexible3 Could monitor SMM code

7 Semantic gap3 Detect transient attacks

7 Additional hardware

MGuard [Z. Liu et al., “CPU Transparent
Protection of OS Kernel and Hypervisor
Integrity with Programmable DRAM”]

FB-DIMM (Memory Module)

Main CPU
Processor

Memory Controller

AMB

MGUARDD
R
AM

D
R
AM

D
R
AM

D
R
AM

D
R
AM

D
R
AM

3 Flexible3 Can monitor SMM code

7 Semantic gap3 Detect transient attacks

7 Requires FB DIMM Memory

65



Related work
Hardware-based CFI approach

Future CFI technology in Intel processors? [Intel Corporation, “Control-flow Enforcement Technology

Specification”]

Advantages

3 Can monitor SMM code

3 Efficient

3 No semantic gap

3 Detect transient attacks

Limitations

7 Precision loss

7 Not flexible (i.e., one detection method)

7 Requires to modify the processor

66



Communication channel

Mailboxes

High latency

Need to design an intermediate hardware component

Restricted FIFO to store temporarily messages

PCIe

• Designed to maximize I/O throughput

• Not suited to send many small packets (coarse-grained interaction)

CPU Interconnects (QPI, HyperTransport)

• Designed to minimize latency

• Suited to exchange small packets (fine-grained interaction)

67



SMBASE integrity

Save State Area

The processor stores its context at SMI entry and restores it at SMI exit

SMBASE

Location of the SMRAM in RAM, stored in the save state area

What if an attacker overwrites the SMBASE?

• Need to exit the SMI and retrigger a SMI

• The new SMBASE is used

• Arbitrary code execution in SMM

Solution

• At boot time: Send the expected value to the monitor

• At runtime: Send the current value at each SMI exit

68



Performance evaluation
Firmware size

Size of firmware code is limited by the amount of flash (e.g., 8MB or 16MB)

EDK2

• +17 408 bytes in firmware code

• +0.6% increase in size for the compressed firmware

coreboot

• Could not compile the whole firmware with our LLVM toolchain (clang not supported by

coreboot)

• AMD Agesa Hudson SMI handlers: +568 bytes

• Intel i82801gx SMI handlers: +3448 bytes

69



Code integrity at runtime
Multiple options

Page tables

Recent BIOSes can enable write protection for SMM code pages20

HP Sure Start Gen321

Detects attempts to modify SMM code

Notifies and takes actions per a predefined policy

20https://lists.01.org/pipermail/edk2-devel/2016-November/004185.html
21http://www8.hp.com/h20195/v2/GetPDF.aspx/4AA6-9339ENW.pdf

70

https://lists.01.org/pipermail/edk2-devel/2016-November/004185.html
http://www8.hp.com/h20195/v2/GetPDF.aspx/4AA6-9339ENW.pdf


References i

Ablon, Lillian and Andy Bogart. Zero Days, Thousands of Nights: The life and Times of Zero-Day
Vulnerabilities and Their Exploits. RAND Corporation, 2017. DOI: 10.7249/RR1751.
Anderson, James P. Computer Security Threat Monitoring and Surveillance. Tech. rep. James P.
Anderson Co., Fort Washington, PA. Apr. 1980. URL: http:
//seclab.cs.ucdavis.edu/projects/history/papers/ande80.pdf.
Balepin, Ivan et al. “Using Specification-Based Intrusion Detection for Automated Response”.

In: Recent Advances in Intrusion Detection. 2003, pp. 136–154. DOI:
10.1007/978-3-540-45248-5_8.
Bazhaniuk, Oleksandr et al. “A new class of vulnerabilities in SMI handlers”. (Vancouver, B.C.,

Canada). CanSecWest. 2015. URL: https://cansecwest.com/slides/2015/A%
20New%20Class%20of%20Vulnin%20SMI%20-%20Andrew%20Furtak.pdf.

https://doi.org/10.7249/RR1751
http://seclab.cs.ucdavis.edu/projects/history/papers/ande80.pdf
http://seclab.cs.ucdavis.edu/projects/history/papers/ande80.pdf
https://doi.org/10.1007/978-3-540-45248-5_8
https://cansecwest.com/slides/2015/A%20New%20Class%20of%20Vulnin%20SMI%20-%20Andrew%20Furtak.pdf
https://cansecwest.com/slides/2015/A%20New%20Class%20of%20Vulnin%20SMI%20-%20Andrew%20Furtak.pdf


References ii

Bulygin, Yuriy, Oleksandr Bazhaniuk, et al. “BARing the System: New vulnerabilities in Coreboot

& UEFI based systems”. REcon Brussels. 2017. URL: https://www.c7zero.info/
stuff/REConBrussels2017_BARing_the_system.pdf.
Bulygin, Yuriy and David Samyde. “Chipset based approach to detect virtualization malware”.

Black Hat USA. 2008. URL:

http://www.c7zero.info/stuff/bh-usa-08-bulygin.ppt.
CERT C Coding Standard. ERR00-C. Adopt and implement a consistent and comprehensive
error-handling policy. Aug. 30, 2019. URL:
https://wiki.sei.cmu.edu/confluence/display/c/ERR00-
C.+Adopt+and+implement+a+consistent+and+comprehensive+error-
handling+policy.

https://www.c7zero.info/stuff/REConBrussels2017_BARing_the_system.pdf
https://www.c7zero.info/stuff/REConBrussels2017_BARing_the_system.pdf
http://www.c7zero.info/stuff/bh-usa-08-bulygin.ppt
https://wiki.sei.cmu.edu/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy
https://wiki.sei.cmu.edu/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy
https://wiki.sei.cmu.edu/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy


References iii

CERT C Coding Standard. EXP12-C. Do not ignore values returned by functions. Aug. 30, 2019.
URL: https://wiki.sei.cmu.edu/confluence/display/c/EXP12-
C.+Do+not+ignore+values+returned+by+functions.
Chevalier, Ronny, David Plaquin, Chris Dalton, et al. “Survivor: A Fine-Grained Intrusion

Response and Recovery Approach for Commodity Operating Systems”. In: Proceedings of the
35th Annual Computer Security Applications Conference. ACSAC’19. ACM, Dec. 2019. DOI:
10.1145/3359789.3359792.
Chevalier, Ronny, David Plaquin, and Guillaume Hiet. “Intrusion Survivability for Commodity

Operating Systems and Services: A Work in Progress”. In: Rendez-vous de la Recherche et de
l’Enseignement de la Sécurité des Systèmes d’Information. RESSI’18. May 2018. URL:
https://ressi2018.sciencesconf.org/190500/document.

https://wiki.sei.cmu.edu/confluence/display/c/EXP12-C.+Do+not+ignore+values+returned+by+functions
https://wiki.sei.cmu.edu/confluence/display/c/EXP12-C.+Do+not+ignore+values+returned+by+functions
https://doi.org/10.1145/3359789.3359792
https://ressi2018.sciencesconf.org/190500/document


References iv

Chevalier, Ronny, Maugan Villatel, et al. “Co-processor-based Behavior Monitoring: Application

to the Detection of Attacks Against the System Management Mode”. In: Proceedings of the
33rd Annual Computer Security Applications Conference. ACSAC’17. ACM, Dec. 2017,
pp. 399–411. DOI: 10.1145/3134600.3134622.
Cooper, David et al. BIOS protection guidelines. Tech. rep. NIST Special Publication 800-147.
National Institute of Standards and Technology, Apr. 2011. DOI:

10.6028/NIST.SP.800-147.
Denning, Dorothy E. “An Intrusion-Detection Model”. In: Proceedings of the 1986 IEEE
Symposium on Security and Privacy (Oakland, CA, USA). IEEE Computer Society, Apr. 1986,
pp. 118–131. DOI: 10.1109/SP.1986.10010.
Ellison, Robert J. et al. Survivable Network Systems: An emerging discipline. Tech. rep. Software
Engineering Institute, Carnegie Mellon University, Nov. 1997. URL:

https://apps.dtic.mil/dtic/tr/fulltext/u2/a341963.pdf.

https://doi.org/10.1145/3134600.3134622
https://doi.org/10.6028/NIST.SP.800-147
https://doi.org/10.1109/SP.1986.10010
https://apps.dtic.mil/dtic/tr/fulltext/u2/a341963.pdf


References v

Foo, Bingrui et al. “ADEPTS: Adaptive Intrusion Response Using Attack Graphs in an

E-Commerce Environment”. In: Proceedings of the International Conference on Dependable
Systems and Networks. DSN ’05. 2005, pp. 508–517. DOI: 10.1109/DSN.2005.17.
Goel, Ashvin et al. “The Taser Intrusion Recovery System”. In: Proceedings of the 20th ACM
Symposium on Operating Systems Principles (Brighton, United Kingdom). SOSP ’05. 2005,
pp. 163–176. DOI: 10.1145/1095810.1095826.
HP Inc. HP Sure Start: Automatic Firmware Intrusion Detection and Repair. Tech. rep. HP Inc.,
Jan. 2019. URL: http://h10032.www1.hp.com/ctg/Manual/c06216928.
Intel Corporation. “Control-flow Enforcement Technology Specification”. May 2019. URL:

https://software.intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf.

https://doi.org/10.1109/DSN.2005.17
https://doi.org/10.1145/1095810.1095826
http://h10032.www1.hp.com/ctg/Manual/c06216928
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf


References vi

Kallenberg, Corey et al. “Defeating Signed BIOS Enforcement”. EkoParty, Buenos Aires. 2013.

URL: https:
//www.mitre.org/sites/default/files/publications/defeating-
signed-bios-enforcement.pdf.
Kheir, Nizar et al. “A Service Dependency Model for Cost-sensitive Intrusion Response”. In:

Proceedings of the 15th European Conference on Research in Computer Security (Athens,
Greece). ESORICS’10. 2010, pp. 626–642. DOI: 10.1007/978-3-642-15497-3_38.
Knight, John C. and Elisabeth A. Strunk. “Achieving Critical System Survivability Through

Software Architectures”. In: Architecting Dependable Systems II. Ed. by Rogério de Lemos,
Cristina Gacek, and Alexander Romanovsky. 2004, pp. 51–78. ISBN: 978-3-540-25939-8.

https://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
https://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
https://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
https://doi.org/10.1007/978-3-642-15497-3_38


References vii

Lee, Hojoon et al. “KI-Mon: A Hardware-assisted Event-triggered Monitoring Platform for

Mutable Kernel Object”. In: Proceedings of the 22th USENIX Security Symposium (Washington,
D.C., USA). USENIX Association, 2013, pp. 511–526. URL: https://www.usenix.org/
system/files/conference/usenixsecurity13/sec13-paper_lee.pdf.
Liu, Ziyi et al. “CPU Transparent Protection of OS Kernel and Hypervisor Integrity with

Programmable DRAM”. In: Proceedings of the 40th Annual International Symposium on
Computer Architecture (Tel-Aviv, Israel). ISCA ’13. ACM, 2013, pp. 392–403. ISBN:
978-1-4503-2079-5. DOI: 10.1145/2485922.2485956.
Morin, Benjamin and Ludovic Mé. “Intrusion detection and virology: an analysis of differences,

similarities and complementariness”. In: Journal in Computer Virology 3.1 (Apr. 1, 2007),
pp. 39–49. DOI: 10.1007/s11416-007-0036-2.

https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_lee.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_lee.pdf
https://doi.org/10.1145/2485922.2485956
https://doi.org/10.1007/s11416-007-0036-2


References viii

Petroni Jr., Nick L. et al. “Copilot - a Coprocessor-based Kernel Runtime Integrity Monitor”. In:

Proceedings of the 13th USENIX Security Symposium (San Diego, CA, USA). USENIX Association,
Aug. 2004, pp. 179–194. URL: https://www.usenix.org/legacy/events/
sec04/tech/full_papers/petroni/petroni.pdf.
Pujos, Bruno. SMM unchecked pointer vulnerability. May 2016. URL:
http://esec-lab.sogeti.com/posts/2016/05/30/smm-unchecked-
pointer-vulnerability.html (visited on 08/05/2019).
Regenscheid, Andrew R. Platform Firmware Resiliency Guidelines. Tech. rep. Special Publication
800-193. National Institute of Standards and Technology, Apr. 2018. DOI:

10.6028/NIST.SP.800-193.
Researchers, ESET. LoJax: First UEFI rootkit found in the wild, courtesy of the Sednit group.
Tech. rep. ESET, Sept. 2018. URL: https://www.welivesecurity.com/wp-
content/uploads/2018/09/ESET-LoJax.pdf.

https://www.usenix.org/legacy/events/sec04/tech/full_papers/petroni/petroni.pdf
https://www.usenix.org/legacy/events/sec04/tech/full_papers/petroni/petroni.pdf
http://esec-lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html
http://esec-lab.sogeti.com/posts/2016/05/30/smm-unchecked-pointer-vulnerability.html
https://doi.org/10.6028/NIST.SP.800-193
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf


References ix

Shameli-Sendi, Alireza, Mohamed Cheriet, and Abdelwahab Hamou-Lhadj. “Taxonomy of

Intrusion Risk Assessment and Response System”. In: Computers & Security 45 (Sept. 2014),
pp. 1–16. DOI: 10.1016/j.cose.2014.04.009.
Shameli-Sendi, Alireza, Habib Louafi, et al. “Dynamic Optimal Countermeasure Selection for

Intrusion Response System”. In: IEEE Transactions on Dependable and Secure Computing 15.5
(2018), pp. 755–770. DOI: 10.1109/TDSC.2016.2615622.
Trusted Computing Group. TPM Main, Part 1 Design Principles. Trusted Computing Group. Mar.
2011. URL:

https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-
Part-1-Design-Principles_v1.2_rev116_01032011.pdf.
UEFI Forum. Unified Extensible Firmware Interface Specification. Version 2.8. Mar. 2019. URL:
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_
final.pdf.

https://doi.org/10.1016/j.cose.2014.04.009
https://doi.org/10.1109/TDSC.2016.2615622
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf


References x

Xiong, Xi, Xiaoqi Jia, and Peng Liu. “SHELF: Preserving Business Continuity and Availability in an

Intrusion Recovery System”. In: Proceedings of the 25th Annual Computer Security Applications
Conference. ACSAC ’09. IEEE Computer Society, 2009, pp. 484–493. DOI:
10.1109/ACSAC.2009.52.

https://doi.org/10.1109/ACSAC.2009.52


Images Credits

URLs provided

Image Name Author License

Rollback Gyorgy Hunor-Arpad CC BY 3.0 US

Application Christopher CC BY 3.0 US

Chip Settings Luis Rodrigues CC BY 3.0 US

Gear Jonathan Higley CC0 1.0 Universal

Harddrive Creaticca Creative Agency CC BY 3.0 US

Microchip Creative Stall CC BY 3.0 US

Research Gregor Cresnar CC BY 3.0 US

https://thenounproject.com/term/rollback/1242039/
https://thenounproject.com/gyorgy.hunor.arpad/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/application/1249006/
https://thenounproject.com/christopher20andreas/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/chip-settings/51255/
https://thenounproject.com/lmf.rodrigues/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/gear/5262/
https://thenounproject.com/jonathan/
https://creativecommons.org/publicdomain/zero/1.0/
https://thenounproject.com/term/harddrive/965822/
https://thenounproject.com/creaticca/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/microchip/147506/
https://thenounproject.com/creativestall/
https://creativecommons.org/licenses/by/3.0/us/
https://thenounproject.com/term/research/252623/
https://thenounproject.com/grega.cresnar/
https://creativecommons.org/licenses/by/3.0/us/

	Introduction: Preventing, Detecting, and Surviving Intrusions
	Surviving Intrusions at the Operating System Level
	State of the Art
	Approach and Prototype
	Evaluation
	Conclusion

	Detecting Intrusions at the Firmware Level
	Background, Use Case, and State of the Art
	Approach and Prototype
	Evaluation
	Conclusion

	Conclusion and Perspectives
	References

