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ABSTRACT
Highly privileged software, such as firmware, is an attractive target
for attackers. Thus, BIOS vendors use cryptographic signatures to
ensure firmware integrity at boot time. Nevertheless, such protec-
tion does not prevent an attacker from exploiting vulnerabilities at
runtime. To detect such attacks, we propose an event-based behav-
ior monitoring approach that relies on an isolated co-processor. We
instrument the code executed on the main CPU to send information
about its behavior to the monitor. This information helps to resolve
the semantic gap issue. Our approach does not depend on a specific
model of the behavior nor on a specific target. We apply this ap-
proach to detect attacks targeting the System Management Mode
(SMM), a highly privileged x86 execution mode executing firmware
code at runtime. We model the behavior of SMM using invariants
of its control-flow and relevant CPU registers (CR3 and SMBASE).
We instrument two open-source firmware implementations: EDK II
and coreboot. We evaluate the ability of our approach to detect
state-of-the-art attacks and its runtime execution overhead by simu-
lating an x86 system coupled with an ARM Cortex A5 co-processor.
The results show that our solution detects intrusions from the state
of the art, without any false positives, while remaining acceptable
in terms of performance overhead in the context of the SMM (i.e.,
less than the 150 µs threshold defined by Intel).
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• Security and privacy → Intrusion detection systems; Sys-
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1 INTRODUCTION
Computers often relies on low-level software, like the kernel of
an Operating System (OS) or software embedded in the hardware,
called firmware. Due to their early execution and their direct access
to the hardware, these low-level components are highly privileged
programs. Hence, any alteration to their expected behavior, mali-
cious or not, can have dramatic consequences on the confidentiality,
integrity or availability of the system.

Boot firmware, like the Basic Input/Output System (BIOS) or
Unified Extensible Firmware Interface (UEFI) compliant firmware,
is in charge of testing and initializing hardware components before
transferring the execution to an OS. In addition to boot firmware,
the platform initializes and executes runtime firmware code while
the OS is running. On x86 systems, a highly privileged execution
mode of the CPU, the System Management Mode (SMM) [41], exe-
cutes runtime firmware code.

Any attacker that can change the original behavior of boot or
runtime firmware, like skipping a verification step, can compro-
mise the system. For this reason, tampering with the firmware is
appealing for an attacker and sophisticated malware tries to infect
it. Such malware is persistent, hard to detect, and does not depend
on the OS installed on the platform [28, 33, 52].

Firmware code is stored on dedicated flash memory. On x86
systems, only runtime firmware code executed in SMM is allowed
to modify the flash. It prevents a compromised OS from infecting
the firmware. During the boot phase and before executing the OS,
the boot firmware loads some code in System Management RAM
(SMRAM). This code corresponds to privileged functions that will
be executed in SMM. Then, the firmware locks the SMRAM and the
flash (using hardware features) to prevent any modification from
the OS. Furthermore, recent firmware uses cryptographic signatures
during the boot process [30, 36, 67] and the update process [19] to
ensure that only firmware signed by the vendor’s key is updated
and is executed. In addition, measurements (cryptographic hash) of
all the components and configurations of the boot process can be
computed and securely stored at boot time, to attest the integrity
of the platform [34].

While cryptographic signatures and measurements provide code
and data integrity at boot time, they do not prevent an attacker from
exploiting a vulnerability in SMM at runtime [8, 27, 74]. Hence, we
need ways to prevent vulnerabilities in SMM, or at least to detect
intrusions exploiting such vulnerabilities.

Our work focuses on designing an event-based monitor for de-
tecting intrusions that modify the expected behavior of the SMM
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code at runtime. While monitoring the behavior of SMM is our
primary goal, ensuring the integrity of the monitor itself is critical
to prevent an attacker from evading detection. Thus, we isolate the
monitor from the monitored component (i.e., the target) by using a
co-processor.

A common issue affecting hardware-based approaches that rely
on an isolated monitor is the semantic gap between the monitor
and the target [48, 55, 63]. Such semantic gap issue occurs when the
monitor only has a partial view of the target state. For example, if
the monitor gets a snapshot of the physical memory without know-
ing virtual to physical mapping (e.g., CR3 register value on x86) it
cannot reconstruct accurately the memory layout of the target. Our
monitor addresses this issue by leveraging a communication chan-
nel that allows the target to send any information required to bridge
this semantic gap. We enforce the communication of information
relevant to the detection method via an instrumentation phase.
In addition, we ensure that the attacker cannot forge messages
without first being detected.

Our detection approach relies on a model of the expected behav-
ior of the monitored component, while any significant deviation
from this behavior is flagged as illegal. We chose an anomaly-based
approach as we aim to detect exploits of unknown vulnerabilities.

In summary, our approach consists in detecting malicious be-
havior of a target program executed on a main CPU. The detection
is implemented in a monitor executed on an isolated co-processor.
We also instrument the target code to enforce the communication
between the target and the monitor at runtime.

This approach can be applied to monitor various low level soft-
ware, such as SMM or ARMTrustZone secure world [4], which have
the following properties: expose primitives called infrequently by
upper layers and performminimal computation per primitive. More-
over, different detection approaches could be used. While generic,
such approach introduces multiple challenges (e.g., the overhead
involved by the communication, the provenance of the messages,
or the integrity of the code added by the instrumentation phase). In
this paper, we focus on the detection of attacks targeting the SMM
code as a use case and show how we tackled these challenges. We
enforce Control-Flow Integrity (CFI) [1, 14, 16, 59, 62, 71, 72, 80] and
monitor the integrity of relevant CPU registers (CR3 and SMBASE)
to illustrate the feasibility of our approach.

Our contributions are the following:

• We propose a new approach using an event-based monitor
targeting low-level software (§ 2).

• We study the applicability of our approach using CFI to
detect attacks against SMM runtime firmware code (§ 5).

• We develop a prototype implementing our approach.
• We evaluate our approach in terms of detection capability
and performance overhead on real-world firmware widely
used in the industry (§ 6).

This paper is structured as follows. First, in § 2, we provide an
overview of our generic approach. Then, in § 3, we give a brief
background on CFI and SMM.We detail the threat model associated
with this use case in § 4.We describe the design and implementation
of our prototype in § 5. In § 6, we evaluate our approach. In § 7, we
compare our approach with related work. Finally, we conclude and
propose some future work in § 8.

2 APPROACH OVERVIEW & REQUIREMENTS
In this section, we describe the generic concepts and requirements
of our event-based behavior monitoring approach. As explained
in § 1, such concepts could be used to monitor different targets and
could rely on different detection approaches. We detail in § 5 one
possible implementation of this generic approach to detect runtime
attacks on SMM code using CFI.

Our approach, illustrated in Figure 1, relies on three key compo-
nents, which we detail in the following subsections: a co-processor,
a communication channel, and an instrumentation step. The co-
processor isolates the monitor from the target. The target uses the
communication channel to give more precise information about
its behavior to the monitor. The instrumentation step enforces the
communication.

Co-processor RAM Processor RAM

monitor target

Co-processor Processor

Expected
target behavior

Instrumented code

Communication
channel

Figure 1: High-level overview of the approach

2.1 Co-processor
The integrity of the monitor is crucial, because it is a trusted compo-
nent that we rely on to detect intrusions in our system. The monitor
could also be used to start remediation strategies and restore the
system to a safe state. If the attacker compromised our monitor, we
could not trust the detection nor the remediation.

When the target and the monitor share the same resources
(e.g., CPU or memory), it gives the attacker a wide attack surface.
Thus, it is necessary to isolate the monitor from the target. Mod-
ern CPUs provide hardware isolation features (e.g., SMM or ARM
TrustZone [4]) reducing the attack surface. However, if one wants
to monitor the code executed in such environment, the monitor
itself cannot benefit from these isolation features.

In our approach, we use a co-processor to execute the monitor.
Such co-processor has its own execution environment and memory.
Thus, the attacker cannot directly access this dedicated memory
even if the target has been compromised. The attacker could only in-
fluence the behavior of the monitor via the communication channel,
which becomes the only remaining attack surface. The simplicity of
such an interface, however, makes it harder to find vulnerabilities
and to attack the monitor. Such design reduces the attack surface.

In the following subsection, we discuss the requirements for our
communication channel.

2.2 Communication with the monitor
Being isolated from the target, the monitor cannot retrieve entirely
the execution context of the target. Thus, there is a semantic gap
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between the current behavior of the target and what the monitor,
executed on the co-processor, can infer about this behavior [7, 43].
For example, the monitor does not have sufficient information to
infer the virtual to physical address mapping, nor the execution
path taken at any point in time.

We introduce a communication channel between the monitor
and the target. It allows the target to send messages to the monitor.
Different types of information could be sent using this communi-
cation channel such as the content of a variable in memory, the
content of a register, or the address of a variable. The nature of such
information depends on the detection approaches implemented on
the monitor, providing flexibility in our approach.

The communication channel is the only remaining attack vector
against the monitor. Thus, how the monitor processes the messages
and how the target sends them are an important part of the security
of the approach. To this end, we require the following properties:

(CC1) Message integrity If a message is sent to the monitor,
it cannot be removed or modified. Otherwise, an attacker
could compromise the target and then modify or delete the
messages before they are processed by the monitor to hide
the intrusion.

(CC2) Chronological order Messages are retrieved by the
monitor in the order of their emission. Otherwise, an at-
tacker could rearrange the order to evade the detection.

(CC3) Exclusive access The instrumented code has exclusive
access to the communication channel. Otherwise, an attacker
could forge messages faking a legitimate behavior.

(CC4) Low latency Sending a message should be fast (e.g.,
sub-microsecond), because low-level components need to
minimize the time spent performing their task to avoid im-
pacting higher-level components and the user experience.

2.3 Instrumentation of the target
We enforce the communication from the target to the monitor by
adding the communication code during an instrumentation step.
This instrumentation step can be performed during the compilation
or by rewriting the executable binary code.

Our approach relies on this enforcement, as should an attacker
tamper with the instrumentation, the monitor would get inaccurate
context of the behavior of the target making avoiding detection
possible. Thus, the integrity of the instrumentation (i.e., the com-
munication code of the target) is crucial. To this end, we require
the following properties:

(I1) Boot time integrity The code and data at boot time are
genuine and cannot be tampered with by the attacker.

(I2) Runtime code integrity The code cannot be modified by
the attacker at runtime.

3 BACKGROUND
In this section, we provide an overview on control-flow hijacking
and CFI. Then, we give some background regarding the SMM.

3.1 Control Flow Integrity (CFI)
Widely used defense mechanisms such as non-executable data and
non-writable executable code impede attackers in their ability to

exploit low-level vulnerabilities. Nevertheless, if an attacker man-
aged to modify an instruction pointer due to a vulnerability, then
program execution would be compromised. For example, in an x86
architecture, programs store the return address of function calls on
the stack. An attacker could exploit a buffer overflow to overwrite
the return address with an arbitrary one that redirect the execution
flow. Code-reuse attacks, such as Return-Oriented Programming
(ROP) [66] or Jump-Oriented Programming (JOP) [11, 17], use indi-
rect branch instructions (i.e., indirect call to a function, return from
a function and indirect jump) to chain together short instruction
sequences of the existing code to perform arbitrary computations.

The enforcement of a policy over the control-flow can prevent
such attack. This defense mechanism, called Control-Flow Integrity
(CFI), enforces integrity properties for each indirect branch where
the control-flow transfer is determined at runtime. It ensures that
a given execution of a program follows only paths defined by a
Control-Flow Graph (CFG). This graph represents all the legitimate
paths that the program can follow. The CFG needs to be defined
ahead of time and it can be computed via source code analysis [1],
binary analysis [80], or execution profiling [76].

A typical way to enforce CFI is by instrumenting the code, e.g.,
during the compilation phase. This inlined-based approach adds
runtime checks before each indirect branch [1, 71, 72]. If the address
is not within a finite set of allowed targets, the program stops.

A fined-grained CFI combines a shadow call stack (i.e., an in-
dependent protected stack that only stores return addresses) and
a precise CFG (i.e., a CFG with a small approximation regarding
indirect branches) to enforce CFI on all indirect control transfers.

Some implementations [31, 80] sacrifice security over perfor-
mance by building a less precise CFI. They either focus on pro-
tecting the backward-edge on the CFG (e.g., with a shadow call
stack) or on protecting the forward-edge (e.g., indirect calls). Davi
and Monrose [25] demonstrated that such implementations, called
coarse-grained CFI, fail to protect against control-flow hijacking.
Carlini et al. [16] also raised awareness on this issue by consolidat-
ing the argument that without stack integrity (i.e., without using a
shadow call stack), CFI is insecure.

Our solution uses a type-based CFI inspired by the work of Niu
and Tan [59] and Tice et al. [71]. We implement a shadow call stack
and verify that each indirect call branches to a function with an
expected type signature known at compile time (more details in § 5).

3.2 System Management Mode (SMM)
SMM [41] is a highly privileged execution mode of x86 processors.
It provides the ability to implement OS-independent functions (e.g.,
advanced power management, secure firmware update, or config-
uration of UEFI secure boot variables) [41, 77]. The particularity
of the SMM is that it provides a separate execution environment,
invisible to the OS. The code and data used in SMM are stored in a
hardware-protected memory region only accessible in SMM, called
SMRAM. SMM is entered by generating a System Management
Interrupt (SMI), which is a hardware interrupt. Software can also
make the hardware trigger an SMI.

Access to the SMRAM depends on the configuration of the mem-
ory controller, done by the firmware during the boot. Once all the
necessary code and data have been loaded in SMRAM, the firmware
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locks the memory region so that it can only be accessed by code run-
ning in SMM, thus preventing an OS from accessing it. In addition,
only the code executed in SMM can modify the firmware stored
into flash to prevent malware, executing with kernel privileges,
from overwriting the firmware and becoming persistent.

The particularity of an SMI is that it makes all the CPU cores
enter SMM. It is non-maskable and non-reentrant. Hence, this in-
terrupt must be processed as fast as possible, since the OS is paused
during the handling of an SMI.

Despite hardware-based protection of the SMRAM, several at-
tacks [8, 12, 20, 27, 60, 61, 65, 74, 75] were publicly disclosed. These
attacks are proof-of-concepts that attackers could use to perform ar-
bitrary code execution in SMM, once the SMRAM has been locked.

Cache poisoning. Two research teams [27, 74] independently dis-
covered cache poisoning attacks in SMM. Since the cache is shared
between all the execution modes of the CPU, the attack consists
in marking the SMRAM region to be cacheable with a write-back
strategy. Then, the attacker stores in the cache malicious instruc-
tions. After that, once an SMI is triggered, the processor fetches
the instructions from the cache. Thus, the processor executes the
malicious instructions of the attacker instead of the legitimate code
stored in SMRAM. The solution is to separate the cache between
non-SMM and SMM executions. This vulnerability has been fixed
by adding a special-purpose register. Such register can only be
modified in SMM and decides the cache strategy of the SMRAM.

Insecure call. Multiple firmware implementations [20] used call
instructions to jump to code segments outside of the SMRAM. An
attacker with kernel-level privileges can easily modify this code.
These vulnerabilities have been fixed by forbidding the processor to
execute instructions located outside of the SMRAM while in SMM.

Other vulnerabilities due to indirect calls [61, 75] allow attackers
to perform code-reuse attacks against the SMM code. Such attacks
are usually prevented by patching these vulnerabilities. Our ap-
proach can detect code-reuse attacks in general without requiring
patching.

Unchecked data. Some SMI handlers rely on data provided by
the OS (i.e., controlled by the attacker). If they do not sanitize such
data, the attacker can influence the behavior of the SMM.

For example, pointer vulnerabilities in an SMI handler can lead to
arbitrary write into SMRAM [8, 60, 65]. It can occur because the SMI
handler writes data into a buffer located at an address controlled
by the attacker. For example, such address can be provided thanks
to a register that could have been modified by the attacker. Bulygin
et al. [12] also demonstrated a similar attack by modifying the Base
Address Registers (BAR) used to communicate with PCI devices.

It is the responsibility of SMI handlers to verify that the data
given or controlled by the OS is valid. For example, they should
check that the address of the communication buffer is not pointing
into the SMRAM, and that the BARs point to valid addresses (i.e.,
not in RAM or SMRAM).

4 THREAT MODEL AND ASSUMPTIONS
As explained previously, the SMM is the last bastion of firmware
security. It is the only mode that allows write access to the flash
storage of the firmware, and its execution is invisible to the OS,

thus a perfect place to hide malware [28]. In addition, it allows
the attacker to perform actions that cannot be realized with kernel
privileges. For example, if the attacker wants to remain persistent
or modify security configurations (e.g., disable secure boot).

Every time a vulnerability related to the SMM has been re-
ported it has been patched. Firmware, however, is not updated
frequently [45]. Moreover, in practice, vendors typically use third-
party code to build their firmware making code review and vulner-
ability management more difficult.

Hence, we assume that the attacker will find a vulnerability,
but exploitation of such vulnerability implies a deviation from the
expected behavior of the SMM code. Thus, our approach focuses
on monitoring its behavior. Such anomaly-based approach is not
limited to the detection of well-known attacks, but can also detect
the exploitation of unreported (zero-day) vulnerabilities.

We assume that the code during the boot process is legitimate
and that no attack is performed during that phase until the SMRAM
is locked. Such an assumption is reasonable with the use of existing
security mechanisms for recent firmware such as:

• An immutable hardware root of trust to verify that the boot
firmware has a valid cryptographic signature from the ven-
dor before its execution [36, 67],

• Cryptographic signatures during the update process [19],
• A Trusted Platform Module (TPM) chip to measure all the
components of the boot process at boot time [34].

These mechanisms provide us with code and data integrity at
boot time (I1, a requirement stated in § 2.3). In addition, since
recent firmware use page tables [73] in SMM we can enable write
protection [78, 79] and assume code integrity at runtime (I2).

Another key assumption is that the attacker cannot send mes-
sages in lieu of SMM without being detected. First, by design, mes-
sages cannot be sent by other components than the CPU and among
the messages sent by the CPU only those sent in SMM are processed
by the monitor (see § 5.3.2). Second, we assume that there is no
vulnerability in SMM code that can be exploited by an attacker to
forge messages without altering the control flow. Since any attempt
to alter the control flow results in the emission of a message de-
scribing an invalid control flow (see § 5.4.1), the attacker cannot
forge messages without first being detected.

Finally, we do not consider an attacker trying to impede the
availability of the system (denial of service) by flooding the commu-
nication channel. The attacker already has sufficiently high privi-
leges to perform a denial of service (e.g., shutdown the machine).
We model such an attacker with the following capabilities:

• Complete control over the OS or the hypervisor, meaning
that the attacker already found vulnerabilities that elevate
its privileges to kernel-level or hypervisor-level,

• Complete control over the memory, except the SMRAM,
which is protected,

• Cannot exploit hardware vulnerabilities (e.g., cache poison-
ing attacks [27, 74] or bypassing SMRAM protection),

• Can trigger as many SMIs as necessary,
• Can exploit a memory corruption issue in an SMI handler.

This threat model is close to those used in the different attacks
described in § 3.2 (except for the cache poisoning attack).
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5 SMM BEHAVIOR MONITORING
We apply our generic approach to monitor the behavior of the SMM
code using CFI and by ensuring the integrity of relevant x86 CPU
registers. The design of our solution is illustrated in Figure 2. In this
figure, straight arrows represent the steps taken during runtime and
dashed arrows the steps taken during the instrumentation phase
(compilation time). We describe our implementation in more details
in the following subsections.

Monitor

Indirect calls
handling

Shadow
call stack

CPU registers
integrity

Fetch message

Invalid?

Firmware
· · ·

packet
packet

Memory
mapped
device

Target

LLVM
compilation

Source code

4. Dispatch

1. Instrumented code

1. Indirect calls
mapping

2. Push packet

3. Pop
packet

5. Detect

6. Remediation action

Compile time
Runtime

Figure 2: High-level overview of the implementation

5.1 Detection method
5.1.1 CFI. We enforce a CFI policy, because it is suited to de-

tect attacks on low-level vulnerabilities that often appears in code
written in C. Our monitor, executed on the co-processor, verifies
that the control-flow information sent by the target is valid.

The monitor implements a type-based CFI inspired by the work
of Niu and Tan [59] and Tice et al. [71]. It ensures that the address
used in an indirect call matches the address of a function having an
expected type signature known at compile time. For example, the
call site s->func(s, 1, "abc") is an indirect call where func has
int (*func)(struct foo*, int, char *) as a type signature.
Thus, the monitor ensures that the address of func used at that
call site always points to a function having the same signature. In
addition, the monitor implements a shadow call stack to ensure the
integrity of return addresses on the stack.

A type-based CFI over-approximates the set of expected point-
ers with all functions with the same type signature. In practice,
type-based CFI gives small equivalence classes [14] where one
equivalence class contains all the possible targets for one call site.
An alternative could be to use a points-to analysis such as the work
from Lattner et al. [47]. This type of analysis can sometimes give
precise results (i.e., the complete set of pointers). However, in prac-
tice, as shown by Evans et al. [29], such analysis often fails to give
the accurate set of pointers resulting in large equivalent classes
such as all the available functions in the program.

Finally, our approach isolates the detection logic, the model of
the behavior, and the data structures (e.g., shadow call stack and
indirect call mappings) with the use of an isolated co-processor.
It prevents attackers from tampering with it. Thus, we provide

a more robust CFI using external monitoring in comparison to
inlined-based CFI [1].

5.1.2 CPU registers integrity. In addition to a CFI policy, the
monitor ensures the integrity of relevant x86 CPU registers in
SMM. It stores expected values in its memory at boot time and
verifies the values sent by the target at runtime.

When entering SMM, the main CPU stores its context in the
save state area, and restores it when exiting [41]. The location of
the SMRAM, called the SMBASE, is saved in the save state area.
The processor uses the SMBASE every time an SMI is triggered
to jump to the SMM entry point. Hence, it is possible for an SMI
handler to modify the SMBASE in the save state area, and the next
time an SMI is triggered, the processor will use the new SMBASE.
Such behavior is genuine at boot time to relocate the SMRAM to
another location in RAM. At runtime, however, there is no valid
reason to do this. If an attacker manages to change the SMBASE, it
results in arbitrary code execution when the next SMI is triggered.
Therefore, the monitor ensures that the SMBASE value does not
change between SMIs at runtime.

In addition, the monitor ensures the integrity of MMU-related
registers, like CR3 (i.e., an x86 register holding the physical address
of the page directory). Such register is an interesting target for
attackers [43]. Thus, protecting its integrity is needed since recent
firmware enable protected mode and use page tables [73, 78, 79].
These registers are reset at the beginning of each SMI with a value
stored in memory. Such value is not supposed to change at runtime.
If an attacker succeeds in modifying this value stored in memory,
then the corresponding register is under the control of the attacker
at the beginning of the next SMI.

5.2 Co-processor
We take inspiration from the AMD Secure Processor, also known
as the Platform Security Processor (PSP) [3], and the Apple Secure
Enclave Processor (SEP) [56]. Both are used as a security processor
to perform sensitive tasks and handle sensitive data (e.g., crypto-
graphic keys). In those solutions, the main CPU cannot directly
access the memory of the co-processor. It only asks the co-processor
to perform security-sensitive tasks via a communication channel.

The PSP is an ARM Cortex A5 and the SEP is an ARM Cortex
A7. Such processors are similar, they are both 32 bit ARMv7 with
in-order execution and 8-stage pipeline. The main difference is that
the A5 is single-issue and the A7 is partial dual-issue.

In our implementation, we chose a similar design and we use an
ARM Cortex A5 co-processor to execute our monitor. It gives us
the isolation needed and enough processing power to process the
messages for our use case.

We implemented our monitor with approximately 1300 lines of
Rust [57], a safe system programming language.

5.3 Communication channel
In this subsection, we look at how existing co-processors commu-
nicate with the main CPU and explain why they do not fit our
requirements. Then, we describe how we design our communica-
tion mechanism to fulfill the properties we defined in § 2.2.
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5.3.1 Existing mechanisms. A major characteristic of the com-
munication channel is its performance, especially its latency, as
each message sent impacts the overall latency of SMI handlers.

The Intel BIOS Test Suite (BITS) defined the acceptable latency
of an SMI to 150 µs [40]. Delgado and Karavanic [26] showed that,
if the latency exceeds this threshold, it causes a degradation of
performance (I/O throughput or CPU time) or user experience (e.g.,
severe drop in frame rates in game engines).

Both the PSP and the SEP use mailbox communication channels
to send and receive messages with the main CPU [2, 56]. Mailboxes
work as follows. One processor writes to a mailbox register, which
triggers an interrupt in a second CPU. Upon receiving the interrupt,
the second CPU executes code that fetches the value in the mailbox,
processes the message, and then writes a response.

We could use such a mechanism to fulfill our security properties
(CC1 and CC2) by making the SMM code wait until the co-processor
acknowledged the message. Shelton [68] studied the latency of
mailboxes on Linux and measured on average a 7500 cycles latency.
For example, with a 2GHz clock this gives 3.75 µs per message.
Thus, not fulfilling the low-latency requirement (CC4).

Since the mechanism used by existing co-processors, like the PSP
or the SEP, does not allow low latency communication while ful-
filling our security requirements, we designed a specific hardware
component to that end.

5.3.2 Restricted FIFO. We designed a restricted First In First
Out (FIFO) queue between the main CPU and the co-processor.
This FIFO is implemented as an additional hardware component
connected to the main CPU and the co-processor, because we want
to re-use existing processors without modifying them.

The goal of the FIFO is to store the messages sent by the target
awaiting to be processed by the co-processor. The FIFO only allows
the main CPU to push messages and the co-processor to pop them.
The FIFO receives messages fragmented in packets. Only our FIFO
handles the storage of the messages, the attacker does not have
access to its memory, thus it cannot violate the integrity of the
messages. We consider single-threaded access to the FIFO, since
only one core handles the SMI, while other cores must wait [41].1

We are using a co-processor with less processing power than
the main CPU and the monitor usually processes messages at a
lower rate than their production. Thus, the FIFO could overflow.
Such a case would happen if the monitored component would be
continuously executing, which is not the case with SMM code.
Most of the time the main CPU will execute code in kernel land
or userland, which are not monitored and hence do not send any
message. An SMI, on the other hand, will create a burst of messages
when triggered. Hence, the only case where the FIFO could overflow
is if an attacker deliberately triggered SMIs at very high rate, which
would be detected as an attack.

We use a fast interconnect between the main CPU executing
the monitored component and the FIFO. The precise interconnect
depends on the CPU manufacturer. In the x86 world two major

1At the beginning of each SMI, there is a synchronization code ensuring that only one
core executes in SMM. This implies that we do not instrument the code responsible
for the synchronization between the cores. Such code does not interact with any
attacker-controlled data and cannot be influenced by the attacker, hence we trust it.

interconnects exist: QuickPath Interconnect (QPI) [39] from Intel
and HyperTransport [35] from AMD.

These interconnects are used for inter-core or inter-processor
communication and are specifically designed for low latency. For
example, CPU manufacturers are using them to maintain cache
coherency. Furthermore, they have been leveraged to perform CPU-
to-device communication [32, 53, 54]. The co-processor could be
connected to the FIFO using these interconnects (using glue logic)
or an interconnect with similar performance (e.g., AMBA [6]).

Our monitored component has a mapping between a physical
address and the hardware component (i.e., the FIFO) allowing it
to send packets via the interconnect. Routing tables are used by
interconnects. Such routing tables are configured via a software
interface (with kernel privileges) to decide where the packets are
sent. Thus, as explained by Song et al. [69], it would be possible for
an attacker to modify the routing tables to prevent the delivery of
the messages to the FIFO. Such attack would be the premise of an
attack against a vulnerable SMI handler. Therefore, at the beginning
of each SMI, we enforce the mapping by overwriting the routing
table in the SMM code to prevent such an attack.

In addition, the FIFO filters the messages by checking the SMI-
ACT# signal of the CPU specifying whether the main CPU is in
SMM or not [35, 41]. Hence, the monitor only processes messages
sent in SMM and prevents an attacker from sending messages when
the target is not executing (e.g., an attacker sending messages in
kernel mode).

To summarize, this design fulfills the message integrity property
(CC1), since the target can only pushmessages to the restricted FIFO.
Moreover, if the queue is full it does not wrap over and the target
enforces the routing table mapping. It fulfills the chronological
order property (CC2), because it is a FIFO and there is no concurrent
access to it while in SMM. In addition, it fulfills the exclusive access
property (CC3), since we filter messages to ensure they only come
from the SMM, the integrity of the instrumentation code is ensured
with the use of page tables with write-protection enabled, and the
attacker cannot forge messages without first being detected. Finally,
we fulfill the last property (CC4) by using a low latency interconnect
between the main CPU and the FIFO.

5.4 Instrumentation
The instrumentation step of our implementation that modifies the
SMM code is twofold: (1) an instrumentation to send CFI related
information; and (2) an instrumentation to send information re-
garding x86 specific variables.

As previously stated, the goal of the instrumentation is to send
information to the monitor. In comparison to other approaches
where they inline some verifications in the instrumented code, we
only use mov instructions to send packets to our FIFO.

5.4.1 CFI. We rely on LLVM 3.9 [46], a compilation framework
widely used in the industry and the research community, to in-
strument the SMM code. We implement two LLVM passes with
approximately 600 lines of C++ code.

The first pass enforces the backward-edge CFI (i.e., a shadow
call stack). It instruments the SMM code to send one message at
the prologue and epilogue of each function. Such message contains
the return address stored on the stack.
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The second pass enforces forward-edge CFI (i.e., indirect calls
always branch to valid targets). For each indirect call site, we assign
a unique identifier (CSID), we create a mapping between their CSID
and the type signature of the function called, and we add this type
into a set of types called indirectly (SIND). We instrument each
indirect call site to send the CSID and the branch target address to
the monitor before executing the indirect call.

Then, for each function whose type signature is in SIND, we add
a mapping between the function offset in memory and its type. This
mapping gives us all the functions that could be called indirectly
with their type signature and offset in memory.

Message
Call Site ID 1561

Target Address 0x0fffb804

Message Call Site ID Type
1561 i8(i32)
4852 i32(i8)
... ...

Function Address Type
0x0fffb804 i8(i32)
0x0befca04 i32()

... ...

equals?

(M2)

(M1)

Figure 3: Mappings used to verify indirect calls messages

At the end of the build process, we provide two pieces of in-
formation: (1) a mapping between a CSID and a type; and (2) a
mapping between an offset and the type of the function at that
location. However, such information is not enough for the monitor
to have the mapping at runtime. It only has the functions offset
and not their final address in memory, hence the monitor needs
the base address of the code used for the SMM. We provide this
information to the monitor by instrumenting the firmware code to
send the address during the initialization phase (before the SMRAM
is locked). This way, at boot time, the monitor computes the final
mapping by adding the offset to the corresponding base address.

Finally, as illustrated in Figure 3, the monitor can compute two
mappings: (M1) a mapping between a CSID and its expected type;
and (M2) a mapping between the address of a function and its type.
Thanks to this information, the monitor can verify that the target
address received in a message has the expected type according to
the call site ID from the same message. The attacker can control
the target address, but not the call site ID.

5.4.2 CPU registers integrity. We also instrument the SMM code
to send some values related to x86 CPU registers. These values,
such as SMBASE or the saved value of CR3, could be modified by
an attacker to take control of the SMM or evade detection.

First, we add some code executed at boot time to send the current
values to the monitor. Since there is no legitimate modification of
these values at runtime, the monitor registers them. Secondly, we
add some code executed at runtime to send the values at the end of
each SMI.

6 EVALUATION
We evaluated our approach on two real-world implementations of
code running in SMM. We first conducted a security evaluation of
our approach using QEMU, as described in § 6.2. Then, we used the

gem5 simulator to evaluate the runtime overhead of our approach,
as detailed in § 6.3.

We used a simulation-based prototype in order to have enough
flexibility in exploring the hardware architecture, in a manner that
would have been difficult to achieve using real hardware, such
as FPGA-based solutions.2 A simulation allows us to simulate an
interconnect and to simulate the delay it takes for the main CPU to
send one packet to the restricted FIFO.

6.1 Experimental setup
We used EDK II [70] and coreboot [21], two real-world implemen-
tations of code running in SMM. EDK II is an open source UEFI
compliant firmware used as the foundation for most vendor-based
firmware. Coreboot is an open source firmware performing hard-
ware initialization before executing a payload (e.g., legacy BIOS or
UEFI compliant firmware). We built this firmware using our LLVM
toolchain and we only instrumented the SMM related code.

6.1.1 Simulator and emulator. We both used a simulator and an
emulator to validate our approach. The main goal of emulators is to
be as feature-compatible as possible. However, they are not cycle-
accurate and does not try to model accurately the performance
of x86 or ARM platforms. Simulators, on the other hand, try to
model accurately the performance of the platforms they simulate,
but often do not implement all their features (e.g., no possibility to
lock the SMRAM). Therefore, we use emulators to have all the SMM
features, which is mandatory for security evaluation, and simulators
to model accurately the performance of our implementation.

For the security evaluation, we used the QEMU 2.5.1 [9] emulator.
We modified QEMU to emulate our communication channel.

We used the gem5 [10] cycle-accurate simulator to estimate the
performance impact both on the main CPU by modeling an x86
system, and on the co-processor by modeling an ARM Cortex A5.
Butko et al. [15] evaluated that gem5 gave a performance prediction
with a 20% error on average.

We modified gem5 to simulate our FIFO communication channel.
It allowed us to specify the delay (in nanoseconds) it takes to send
or receive information from it. We give the parameters used for
gem5 in Appendix A.

6.1.2 Simulated communication channel delay. We relied on pre-
vious studies on interconnects [18, 53] to estimate the delay of the
communication channel.

Litz et al. [53] encountered a latency between 36 to 64 cycles to
send one packet with HyperTransport on a CPU-FPGA platform.3
Even with a small clock rate, for example 500MHz, we can expect a
latency of around 72 to 128 ns, close to an uncached memory access.
Choi et al. [18] have similar results with QPI-based platforms.4

Hence, we simulated a delay of 128 ns to send one packet. This
corresponds to the worst-case scenario to send one packet. Since
the reference latency we have for AMD HyperTransport and Intel
2 At the time of writing, to the best of our knowledge, there is no off-the-shelf
FPGA-based solutions with direct access to HyperTransport or Intel QPI commer-
cially available.
3Litz et al. [53] designed an FPGA card with the HTX3 interface, which is needed for
point-to-point communication with HyperTransport. Xilinx used to sell such products
but they are now discontinued.
4Choi et al. [18] had access to a QPI-based CPU-FPGA platform thanks to a collabora-
tion between Intel and academics at that time.
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QPI are for FPGA prototypes, lower latencies are expected with an
ASIC implementation.

Furthermore, since we use a point-to-point connection, we did
not consider a fluctuation of the latency. Moreover, as explained
in § 5.3.2, only one core of the main CPU is running while in SMM.

Finally, we simulate the same interconnect and delay between
the main CPU and the FIFO, and between the co-processor and the
FIFO.5

6.1.3 SMI handlers. For our performance evaluation, we used
SMI handlers from EDK II and coreboot. EDK II does not implement
any hardware initialization nor vendor-related SMI handlers. At
the time of writing, most of SMI handlers available in EDK II at
runtime are dependent on hardware components that cannot be
easily simulated (e.g., an Opal device or a TPM chip).

In our evaluation, we used the VariableSmm SMI handlers from
EDK II. They manage variables within the SMM [77] thanks to four
different handlers: GetVariable, SetVariable, QueryVariableInfo and
GetNextVariableName (GNVN).

Since coreboot provides hardware initialization and vendor-
related SMI handlers, we use them for our evaluation. In addition,
these handlers communicate with devices, which can be simulated
with gem5. A majority of these handlers are simpler compared
to the VariableSmm SMI handlers. We used three SMI handlers
for the Intel ICH4 i82801gx6 and two for the AMD Agesa Hudson
southbridge.7 These SMI handlers process hardware events such as
pressing the power button (PM1), General Purpose Events (GPE),
Advanced Power Management Control (APMC) events, or Total
Cost of Ownership (TCO) events.

6.2 Security evaluation
There is no public dataset of vulnerable SMM code, in contrast to
userland applications. Attacks targeting the SMMare highly specific
to the architecture and to the proprietary code of the platform. Such
code is therefore not publicly available and would not execute on
our experimental setup, thus cannot be used to test our solution.

Consequently, we have implemented SMI handlers with vulner-
abilities similar to previously disclosed ones (see § 3.2) affecting
real-world firmware. We reproduced attacks exploiting the follow-
ing vulnerabilities giving arbitrary execution: (1) A buffer overflow
in a SMI handler allowing an attacker to modify the return address
stored on the stack [44]; (2) An arbitrary write allowing an attacker
to modify a function pointer used in an indirect call [60]; (3) An ar-
bitrary write allowing an attacker to modify the SMBASE [65]; and
(4) An insecure indirect call where the function pointer is retrieved
from a data structure controlled by the attacker [61].

As shown in Table 1, the monitor detected all these attacks
as soon as it received and processed the messages, since these
attacks modify the control-flow of the SMM code (i.e., its behavior).
We did not encounter false positives, which is expected since we
use a conservative strategy regarding indirect calls. Also, while
bad software engineering practices using function type cast could

5In practice, one would need to use a similar interconnect or a glue logic for the ARM
architecture.
6E.g., present on motherboards from Apple, ASUS, GIGABYTE, Intel or Lenovo.
7E.g., present on motherboards from AMD, ASUS, HP, Lenovo or MSI.

Vulnerability Attack Target Security Advisories Detected
Buffer Overflow Return address CVE-2013-3582 [22] Yes
Arbitrary write Function pointer CVE-2016-8103 [23] Yes
Arbitrary write SMBASE LEN-4710 [50] Yes
Insecure call Function pointer LEN-8324 [51] Yes

Table 1: Effectiveness of our approach against state-of-the-
art attacks

introduce false positives, we did not encounter such case in the
code we evaluated, as no function cast was present.

While our implementation detects these intrusions, an attacker
could theoretically bypass our solution. First, by managing to send
multiple forged packets without any other legitimate packets being
sent in the middle. Second, doing so without redirecting the control-
flow to send these forged packets (an attack out of our threat model,
see § 4).

Finally, our CFI implementation performs a sound analysis to re-
cover the potential targets of an indirect call. Therefore, the analysis
is not complete and it would be possible for an attacker to redirect
the control flow to a function that should have never been called,
but that has the expected type signature. Nonetheless, we argue
that a type-based CFI increases the difficulty for the attacker, since
the only available targets for an indirect call are a subset of the
existing functions within the SMRAMwith the right type signature.
Our analysis with EDK II gave 158 equivalence classes of size 1, 24
of size 2, 42 of size 3, 2 of size 5, 1 of size 9, and 1 of size 13. As
mentioned by Burow et al. [14], a high number of small equivalence
classes provides a precise CFG. A way to improve the precision of
the CFG would be to combine our static analysis (providing some
context-sensitivity with the type information), with a points-to
analysis, such as the work from Lattner et al. [47]. Such points-to
analysis can sometimes give the complete set of the functions being
called at an indirect call site. An idea would be that if the points-to
analysis gives a complete set, the monitor uses this information to
validate an indirect call, otherwise it uses the over-approximation
of the type signature.

6.3 Performance evaluation
As explained in § 5.3.1, the time spent in SMM is limited (threshold
of 150 µs) [26, 40]. On that account, we evaluated the running time
overhead of our solution on SMI handlers for the main CPU. We
also evaluated the time it takes for the co-processor to process the
messages sent by different SMI handlers. Thus, we can estimate the
time between an intrusion, its detection, and remediation.

Finally, the size of firmware code is limited by the amount of flash
(e.g., 8MB or 16MB). Thus, we evaluated the size of the firmware
before and after our instrumentation.

6.3.1 Runtime overhead. The additional SMM code added with
our instrumentation introduces two costs: the raw communication
delay between the main CPU and the hardware FIFO; and the
instrumentation overhead. The former is related to the time it takes
the main CPU to push the packets to the FIFO. The latter is due to
multiple factors, such as fetching and executing new instructions



Co-processor-based Behavior Monitoring: Detection of Attacks Against the SMM ACSAC 2017, December 4–8, 2017, Orlando, FL, USA

or storing intermediate values resulting in register spilling (e.g., the
return address of a function fetched from the stack).

We performed 100 executions of each SMI handler we selected
for our evaluation (see § 6.1.3). For each SMI handler, we measured
the time it takes for the original handler to execute, the cost of the
communication, and the additional instrumentation overhead. The
results we obtained are illustrated by Figure 4.

We see that even with a low latency of 128 ns there is a high
overhead. It is due to the number of messages related to the shadow
stack (see Table 2), while the number of messages for indirect calls
or the integrity of the relevant CPU registers (SMBASE and CR3)
are negligible. However, this overhead is below the 150 µs thresh-
old [40] ensuring that the impact on the performance of the system
is low and not noticeable for the user.

Number of packets sent

SMI Handler

Shadow
stack
(SS)

Indirect
call
(IC)

SMBASE
& CR3
(SC)

Total
number of
packets

EDK II
VariableSmm
SetVariable 384 4 4 392
GetVariable 240 4 4 248
QueryVariableInfo 299 4 4 208
GetNextVariableName 212 4 4 220

coreboot
Intel i82801gx
APMC/TCO/PM1 8 2 4 14

AMD Agesa Hudson
APMC/GPE 4 0 4 8

Table 2: Number of packets sent during one SMI handler
(Number of packets per message type: SS=2, IC=2, SC=4)

6.3.2 Co-processor performance. We measured the time it takes
for the monitor to process all the messages generated by one execu-
tion of each SMI handler. We made an average of 1000 executions.
Results are illustrated in Figure 5.

For each SMI handler there is at least a factor of 4 between
the time it takes for the target to execute the instrumented SMI
handler and the time it takes for the co-processor to process all the
messages that have been sent by the instrumented SMI handler. For
example, we see in Figure 4 that it takes around 52 µs to execute the
SetVariable SMI handler, and in Figure 5 that it takes around 230 µs
to process all the messages. This means that there is a delay between
an intrusion and its detection, but such delay will be less than
a millisecond. Hence, the co-processor could start a remediation
action within one millisecond after an intrusion occurred.

In our threat model, the attacker already has kernel privileges
before attacking the SMM code. Our objective is not to detect intru-
sions that could have been done solely with kernel privileges, such
as leaking confidential data. We consider that the final objective
of the attacker is to remain persistent in the system even in the
case of a reboot. In this case, the remediation action does not have

to be taken immediately. This remediation would not prevent the
intrusion, but will recover to a safe state.

6.3.3 Firmware size. For EDK II, our instrumentation added
17408 bytes to the firmware code. However, firmware is compressed
before being stored in the flash and only a subset of the firmware
is related to the SMM. We measured a 0.6% increase in size of
the compressed firmware. Thus, our instrumentation incurs an
acceptable overhead in terms of size for the firmware.

For coreboot, our instrumentation added 568 bytes for the AMD
Agesa Hudson SMI handlers and 3448 bytes for the Intel i82801gx
SMI handlers. However, we were not able to measure the whole
firmware size when building coreboot with our LLVM toolchain,
since coreboot does not support clang as a compiler.8 We built sepa-
rately the SMI handlers from coreboot toolchain for our evaluation,
but compiling the whole firmware (not just the SMM related code)
is not possible.

7 RELATEDWORK
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Can monitor SMM code
Flexible
No semantic gap issue
Detect transient attacks
No new/modified hardware

Table 3: Comparison between ourwork and the relatedwork.
: has the property : does not have the property

In this section, we discuss existing approaches to monitor low-
level components such as firmware and kernels, using a hardware-
based approach. To the best of our knowledge, the only commer-
cially available technology that offers SMM integrity monitoring
is HP Sure Start [37, 38]. It uses the chipset and the CPU to moni-
tor SMM code integrity and relies on additional hardware to take
actions per a predefined policy. The details of its implementation,
however, are not public. Thus, we cannot compare it in details to
other approaches in the literature.

The other approaches presented are not necessarily focused on
monitoring the SMM (i.e., the firmware), but they could be adapted
to that aim. We can distinguish two different types of approaches:
snapshot-based approaches are presented in § 7.1 and event-based
approaches in § 7.2. We summarize the comparison between these
approaches and our work in Table 3.

8We could measure the size of coreboot compiled with gcc, but the size varies when
using clang or gcc.
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Figure 5: Time (in microseconds) to process all the mes-
sages sent by one execution of each SMI handler for the co-
processor

7.1 Snapshot-based approach
The first approach consists in taking periodic snapshots of all or
any part of the target state and then to analyze these snapshots to
detect intrusions.

To the best of our knowledge, Zhang et al. [81] were the first to
propose a co-processor for intrusion detection using a snapshot-
based approach. However, they did not implement their design.

Notable implementations of such approach are Copilot [63],
DeepWatch [13], and HyperSentry [7]. Copilot is a kernel integrity
monitor using a co-processor on a PCI card to take periodic snap-
shots of the main memory. The authors also described how to write
rules describing the relationships between kernel objects to de-
tect the presence of kernel rootkits [64]. Copilot, however, cannot
monitor the SMM since it does not have access to SMRAM. Deep-
Watch uses a similar approach to Copilot, but the monitor runs on
an embedded core in the chipset, which allows the monitoring of
the SMM. HyperSentry leverages the SMM to perform measure-
ments giving access to the CPU-context, but it impedes its ability
to monitor the SMM itself.

In general, these snapshot-based solutions are unable to de-
tect transient attacks, where an attacker does not make persistent
changes (e.g., one could erase its traces before each snapshot).

7.2 Event-driven approach
All the following event-driven approaches, like our approach, re-
quire a new specific hardware component or a modification of an
existing hardware component.

Vigilare [58] snoops the memory bus traffic of the host by us-
ing an external hardware component to detect modifications of
immutable regions of a kernel. This approach does not suffer from
transient attacks: as soon as an illegal modification is made it is
detected. KI-Mon [48], its successor, also monitors mutable kernel
objects. MGuard [55] follows a similar approach, but incorporates
the integrity monitor inside a DRAM DIMM device. One limitation,
however, that affects these solutions, is their inability to access the
CPU state of the host they are monitoring (semantic gap issue). Jang
et al. [43] demonstrated the practicability of an evasion scheme by
modifying the CR3 register. Our solution, while being event-driven,
is not vulnerable to the CR3 attack since we monitor it as explained
in § 5.4.2.

While our generic approach does not focus on CFI, our evaluation
used CFI as a detection method to demonstrate the applicability of
our approach. Thus, we compare our solution with hardware-based
CFI approaches.

Lee et al. [49] use a co-processor and debugging features available
in ARM processors to enforce CFI on the main CPU. Davi et al. [24]
extend the instruction set of the processor to enforce a similar
policy. A recent document from Intel [42] suggests that future Intel
processors will have a backward-compatible CFI technology in
hardware (and available for the SMM).

Hardware-based CFI approaches modify the processor or use
additional hardware solely to enforce CFI. Our approach, on the
other hand, is more flexible since different detection approaches
could be implemented without modifying our hardware component.
The flexibility of the solution is important, because the types of
vulnerabilities exploited evolves over time.
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As discussed in § 3, CFI can be implemented without hardware
modifications by inlining the detection logic inside the target. Our
approach, however, isolates the critical parts of the detection pro-
cess such as the shadow call stack and the indirect call mappings.

8 CONCLUSION AND FUTUREWORK
In this work, we propose a new event-based approach for low-level
software using three key components: a co-processor to isolate the
monitor, a communication channel to reduce the semantic gap, and
an instrumentation of the software to enforce the communication.
We show that this approach can be followed to detect intrusions
targeting SMM code by using CFI and by ensuring the integrity
of relevant CPU registers (CR3 and SMBASE). However, it can
implement different detection methods. Unlike other approaches,
we solve the challenges of the semantic gap and the transient attacks
while remaining flexible.

We implemented our approach by instrumenting and monitoring
real-world firmware. The results show that we detect state-of-the-
art attacks against the SMM, while remaining below the 150 µs
threshold, thus avoiding any noticeable impact on the user.

For future work, we would like to investigate how we could
leverage such a co-processor-based monitor to (1) start remediation
strategies and study the impact on the user experience; and (2)
apply our approach to monitor other targets and use other detection
methods. For example, our approach could be used to monitor ARM
TrustZone secure world [4], since it offers a similar environment
than SMM (e.g., a non-secure bit to know whether the CPU is in
the secure world or not, like the SMIACT# signal).

A GEM5

Parameter x86 ARM Cortex A5

CPU Type DerivO3Cpu timingi
Clock 2GHz 500MHz
Restricted FIFO latency 128 ns 128 ns
Cache line size 32 B 32 B

L1 I Size 32 KB 16 KBii
Associativity 2 2

L1 D Size 64 KB 16 KBii
Associativity 2 4

L2 Size 2 MB 512 KB
Associativity 8 8

DRAM Type DDR3_1600 LPDDR3_1600_x32iii
Size 1024 MB 10 MB

i We use the timing model since the A5 is a single-issue in-order CPU and our
evaluation mainly depends on load/store operations. ii The cache size has a range of
options: 4 KB, 8 KB, 16 KB, 32 KB or 64 KB. iii Educated guess, based on the fact that

this is a standard for low power consumption memory.

Table 4: Parameters usedwith gem5 for the x86 and theARM
simulation

In Table 4, we show the different parameters used to configure
gem5 for the simulation of the main CPU and the co-processor.

We use the default parameters of the out-of-order x86 simulation,
except the CPU clock, which we set to a higher frequency. For the
ARM Cortex simulation, we derived the parameters from the ARM
technical reference manual [5].
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